### All College Algebra Resources

## Example Questions

### Example Question #1 : Linear Inequalities

Solve the following inequality.

.

**Possible Answers:**

**Correct answer:**

To solve this inequality, we treat is a a regular equation. First, we add 8 to both sides.

.

We now divide both sides by 2 to get

.

### Example Question #472 : College Algebra

Solve:

**Possible Answers:**

**Correct answer:**

To evaluate, we will need to multiply both sides by one-fifth.

The sign does not need to be switched unless we multiply or divide by a negative value.

The answer is:

### Example Question #471 : College Algebra

Express the following linear inequality in interval notation.

**Possible Answers:**

**Correct answer:**

Upon solving for x, we find that x is larger than -2. The left-hand term of the interval is -2 since it is the lower bound for our set, and it has a parenthesis around it because it is not included in our set (-2 is not greater than -2). The right-hand term of the interval is positive infinity because any number larger than -2 is in the set. There is always a parenthesis around infinity or negative infinity.

### Example Question #1 : Linear Inequalities

Express the following linear inequality in interval notation.

**Possible Answers:**

**Correct answer:**

Upon solving for x, we find that x is less than or equal to 5. The left-hand term of the interval is negative infinity since any number less than 5 is in our set, and infinity always has a parenthesis around it. The right-hand term of the interval is 5 since it is the upper bound of our set. There is a bracket around it because 5 is included in our set (5 is less than **or equal to** 5).

### Example Question #1 : Linear Inequalities

Express the following linear inequality in interval notation.

**Possible Answers:**

**Correct answer:**

Upon expanding and solving for x, we find that x is greater than -1. The left-hand term of the interval is -1 since it is the lower bound of our set, and has a parenthesis around it because it is not in our set (-1 is not greater than -1). The right-hand term of the interval is infinity because any number larger than -1 is in our set, and there is always a parenthesis around infinity.

### Example Question #1 : Linear Inequalities

Express the following linear inequality in interval notation.

**Possible Answers:**

**Correct answer:**

Upon solving for x, we find that 8 is less than or equal to x which is less than or equal to 10, or x is greater than or equal to 8 **AND** x is less than or equal to 10. The left-hand term of our interval is 8 since it is the lower bound for our set, and there is a bracket around it since it is in our set (8 is greater than **or equal to** 8). The right-hand term of our interval is 10 since it is the upper bound for our set, and there is also a bracket around it since it is in our set (10 is less than **or equal to** 10).

### Example Question #61 : Solving Equations And Inequallities

Express the following linear inequality in interval notation.

**Possible Answers:**

**Correct answer:**

Upon solving for x, we find that 1 is less than x which is less than or equal to 5, or x is greater than 1 AND x is less than or equal to 5. The left-hand term of our interval is 1 since it is the lower bound for our set, and there is a parenthesis around it since it is not in our set (1 is not greater than 1). The right-hand term of our interval is 5 since it is the upper bound for our set, and there is a bracket around it since it is in our set (5 is less than **or equal to** 5). Remember when dividing or multiplying an inequality by a negative number to switch the direction of the inequalities.

### Example Question #1 : Linear Inequalities

Express the following linear inequality in interval notation.

**Possible Answers:**

**Correct answer:**

Upon solving for x, we find that -1 is less than or equal to x which is less than 2, or x is greater than or equal to -1 AND x is less than 2. The left-hand term of our interval is -1 since it is the lower bound for our set, and there is a bracket around it since it is in our set (-1 is greater than **or equal to** -1). The right-hand term of our interval is 2 since it is the upper bound for our set, and there is a parenthesis around it since it is not in our set (2 is not less than 2). Remember when dividing or multiplying an inequality by a negative number to switch the direction of the inequalities.

### Example Question #1 : Linear Inequalities

Express the following linear inequality in interval notation.

### or

**Possible Answers:**

**Correct answer:**

Upon solving for x, we find that x is less than or equal to -2 **OR** x is greater than 1. Since x may be in either of those sets, we must take the union of the sets. The first interval begins with negative infinity, since x can be anything less than -2. The first interval ends at -2 and includes it in the set, so there is a bracket around it. We join this interval with the second interval beginning with 1, and there is a parenthesis around 1 since it is not in the set. The second interval ends with infinity since any number larger than 1 is in our set. There are always parenthesis around infinities.

### Example Question #61 : Solving Equations And Inequallities

Express the following linear inequality in interval notation.

### or

**Possible Answers:**

**Correct answer:**

Upon solving for x, we find that x is less than or equal to -7/2 OR x is greater than or equal to 1/2. Since x may be in either of those sets, we must take the union of the sets. The first interval begins with negative infinity, since x can be anything less than -7/2. The first interval ends at -7/2 and includes it in the set, so there is a bracket around it. We join this interval with the second interval beginning with 1/2, and there is a bracket around 1/2 since it is in the set. The second interval ends with infinity since any number larger than 1/2 is in our set. There are always parenthesis around infinities.