### All Trigonometry Resources

## Example Questions

### Example Question #1 : Identities Of Halved Angles

Simplify the function below:

**Possible Answers:**

**Correct answer:**

We need to use the following formulas:

a)

b)

c)

d)

e)

We can simplify as follows:

### Example Question #2 : Identities Of Halved Angles

Find if and .

**Possible Answers:**

**Correct answer:**

The double-angle identity for sine is written as

and we know that

Using , we see that , which gives us

Since we know is between and , sin is negative, so . Thus,

.

Finally, substituting into our double-angle identity, we get

### Example Question #1 : Identities Of Halved Angles

Find the exact value of using an appropriate half-angle identity.

**Possible Answers:**

**Correct answer:**

The half-angle identity for sine is:

If our half-angle is , then our full angle is . Thus,

The exact value of is expressed as , so we have

Simplify under the outer radical and we get

Now simplify the denominator and get

Since is in the first quadrant, we know sin is positive. So,

### Example Question #4 : Identities Of Halved Angles

Which of the following best represents ?

**Possible Answers:**

**Correct answer:**

Write the half angle identity for cosine.

Replace theta with two theta.

Therefore:

### Example Question #1 : Identities Of Halved Angles

What is the amplitude of ?

**Possible Answers:**

**Correct answer:**

The key here is to use the half-angle identity for to convert it and make it much easier to work with.

In this case, , so therefore...

Consequently, has an amplitude of .

### Example Question #1 : Identities Of Halved Angles

If , then calculate .

**Possible Answers:**

**Correct answer:**

Because , we can use the half-angle formula for cosines to determine .

In general,

for .

For this problem,

Hence,

### Example Question #7 : Identities Of Halved Angles

What is ?

**Possible Answers:**

**Correct answer:**

Let ; then

.

We'll use the half-angle formula to evaluate this expression.

Now we'll substitute for .

is in the first quadrant, so is positive. So

.

### Example Question #8 : Identities Of Halved Angles

What is , given that and are well defined values?

**Possible Answers:**

**Correct answer:**

Using the half angle formula for tangent,

,

we plug in 30 for .

We also know from the unit circle that is and is .

Plug all values into the equation, and you will get the correct answer.

Certified Tutor

Certified Tutor