# Calculus 2 : Definite Integrals

## Example Questions

### Example Question #51 : Definite Integrals

Evaluate.

Explanation:

Given:

In this case, .

The antiderivative is  .

Using the Fundamental Theorem of Calculus, evaluate the integral using the antiderivative:

### Example Question #52 : Definite Integrals

Evaluate.

Explanation:

Given:

In this case, .

The antiderivative is  .

Using the Fundamental Theorem of Calculus, evaluate the integral using the antiderivative:

### Example Question #52 : Definite Integrals

Evaluate.

Explanation:

Given:

In this case, .

The antiderivative is  .

Using the Fundamental Theorem of Calculus, evaluate the integral using the antiderivative:

### Example Question #54 : Definite Integrals

Evaluate.

Explanation:

Given:

In this case, .

The antiderivative is  .

Using the Fundamental Theorem of Calculus, evaluate the integral using the antiderivative:

### Example Question #53 : Definite Integrals

Evaluate.

Explanation:

Given:

In this case, .

The antiderivative is  .

Using the Fundamental Theorem of Calculus, evaluate the integral using the antiderivative:

### Example Question #51 : Definite Integrals

Evaluate.

Explanation:

Given:

In this case, .

The antiderivative is  .

Using the Fundamental Theorem of Calculus, evaluate the integral using the antiderivative:

### Example Question #54 : Definite Integrals

Evaluate.

Explanation:

In order to evaluate this integral, first find the antiderivative of

In this case, .

The antiderivative is  .

Using the Fundamental Theorem of Calculus, evaluate the integral using the antiderivative:

### Example Question #58 : Definite Integrals

Evaluate.

Explanation:

In order to evaluate this integral, first find the antiderivative of

In this case, .

The antiderivative is  .

Using the Fundamental Theorem of Calculus, evaluate the integral using the antiderivative:

### Example Question #51 : Definite Integrals

Evaluate.

Explanation:

In order to evaluate this integral, first find the antiderivative of

In this case, .

The antiderivative is  .

Using the Fundamental Theorem of Calculus, evaluate the integral using the antiderivative:

Evaluate.