# Calculus 2 : Definite Integrals

## Example Questions

### Example Question #71 : Definite Integrals

Evaluate.

Round to the nearest whole number.

Explanation:

In this case, .

The antiderivative is  .

Using the Fundamental Theorem of Calculus, evaluate the integral using the antiderivative:

### Example Question #72 : Definite Integrals

Evaluate.

Explanation:

In this case, .

The antiderivative is  .

Using the Fundamental Theorem of Calculus, evaluate the integral using the antiderivative:

### Example Question #73 : Definite Integrals

Evaluate.

Explanation:

In this case, .

The antiderivative is  .

Using the Fundamental Theorem of Calculus, evaluate the integral using the antiderivative:

### Example Question #74 : Definite Integrals

Evaluate.

Explanation:

In this case, .

The antiderivative is  .

Using the Fundamental Theorem of Calculus, evaluate the integral using the antiderivative:

### Example Question #75 : Definite Integrals

Evaluate.

Explanation:

In this case, .

The antiderivative is  .

Using the Fundamental Theorem of Calculus, evaluate the integral using the antiderivative:

### Example Question #76 : Definite Integrals

Evaluate.

Explanation:

In this case, .

The antiderivative is  .

Using the Fundamental Theorem of Calculus, evaluate the integral using the antiderivative:

### Example Question #77 : Definite Integrals

Evaluate.

Explanation:

In this case, .

The antiderivative is  .

Using the Fundamental Theorem of Calculus, evaluate the integral using the antiderivative:

### Example Question #78 : Definite Integrals

Evaluate.

Explanation:

In this case, .

The antiderivative is  .

Using the Fundamental Theorem of Calculus, evaluate the integral using the antiderivative:

### Example Question #79 : Definite Integrals

Evaluate.

Explanation:

In this case, .

The antiderivative is  .

Using the Fundamental Theorem of Calculus, evaluate the integral using the antiderivative:

Evaluate.