All AP Calculus AB Resources
Example Questions
Example Question #1 : Implicit Differentiation
Use implicit differentiation to find given
We simply differentiate both sides of the equation
(Don't forget the chain rule)
Now we solve for
Example Question #1 : Implicit Differentiation
Find
Implicit differentiation is very similar to normal differentiation, but every time we take a derivative with respect t , we need to multiply the result by We also differentiate the entire equation from left to right, including any numbers. Then, we solve for that for our final answer.
Example Question #1041 : Ap Calculus Ab
Find
Implicit differentiation requires taking the derivative of everything in our equation, including all variables and numbers. Any time we take a derivative of a function with respect to , we need to implicitly write after it. Hence, the name of this method. Then, we solve for
Example Question #3 : Implicit Differentiation
Given that , find the derivative of the function with respect to x
To find the derivative of the function, we must use implicit differentiation, which is an application of the chain rule. We start by taking the derivative of the function with respect to x, noting that whenever we take a derivative of y, it is with respect to x, so we denote it as .
Bringing the terms with to one side and factoring it out, we get
Example Question #4 : Implicit Differentiation
Given that , find the derivative of the function
To find the derivative of the function, we must use implicit differentiation, which is an application of the chain rule. We start by taking the derivative of the function with respect to x, noting that whenever we take a derivative of y, it is with respect to x, so we denote it as .
Bringing the terms with to one side and factoring it out, we get
Example Question #1 : Implicit Differentiation
Find :
To find , we must take the derivative of both sides of the equation with respect to x. When we do this, we get
The derivatives were found using the following rules:
, , ,
Note that for every derivative of a function of y with respect to x, the chain rule was used, which accounts for appearing.
Algebraic simplification gets us our final answer,
Example Question #6 : Implicit Differentiation
Find :
To find the derivative of y with respect to x, we must take the differentiate both sides of the equation with respect to x:
The following derivative rules were used:
, , ,
Note that the chain rule was used for both the cosine function (which contains an inner product of two functions), and for the derivative of y, whose derivative with respect to x we want to solve for.
Solving, we get
Example Question #1 : Implicit Differentiation
Find :
To find the derivative of y with respect to x, we must take the differentiate both sides of the equation with respect to x:
The following rules were used:
, , , ,
Note that the chain rule was used everywhere we took the derivative of a function containing y, as well as in the exponential function. The product rule was used because both x and y are both functions of x.
Using algebra to solve, we get
Example Question #1 : Implicit Differentiation
Find , where is a function of x:
None of the other answers
To find the derivative of with respect to x, we must take the differentiate both sides of the equation with respect to x:
The following derivative rules were used:
, , ,
Note that the chain rule was used for the derivative of any function containing , whose derivative with respect to x we want to solve for.
Solving, we get
Example Question #1 : Implicit Differentiation
Given that , find the derivative of the function
To solve this using implicit differentiation, we must always treat y as a function of x, and therefore when we differentiate y with respect to x, we denote it as
Step by step, we get the following:
This resulted from the product rule and chain rule
The next steps are: