AP Calculus AB : Implicit differentiation

Study concepts, example questions & explanations for AP Calculus AB

varsity tutors app store varsity tutors android store

Example Questions

Example Question #71 : Applications Of Derivatives

Differentiate the following implicit function:

Possible Answers:

Correct answer:

Explanation:

For this problem we are asked to find , or the rate of change in y with respect to x.

To do this we take the derivative of each variable and to differentiate between the two, we will write dx or dy after.

would then become

We note that the derivative of a constant is still zero.

We must now rewrite this function in the form 

Example Question #72 : Applications Of Derivatives

Find the implicit derivative,  a circle centered at  with radius .

Possible Answers:

Correct answer:

Explanation:

The equation of a circle centered at  with radius  is .

We first expand our equation to simplify the derivative. 

Take the derivatives of x and y we get:

Since the derivative of a constant is zero.

Next we must rewrite our equation in terms of :

Simplifying:

Example Question #23 : Implicit Differentiation

Given that , find the derivative of the function

Possible Answers:

Correct answer:

Explanation:

To find the derivative with respect to y, we use implicit differentiation, which is an application of the chain rule.

Example Question #24 : Implicit Differentiation

Given that , find the derivative of the function

Possible Answers:

Correct answer:

Explanation:

To find the derivative with respect to y, we use implicit differentiation, which is an application of the chain rule

Example Question #25 : Implicit Differentiation

Given that , find the derivative of the function 

Possible Answers:

Correct answer:

Explanation:

To find the derivative with respect to y, we use implicit differentiation, which is an application of the chain rule

Example Question #71 : Applications Of Derivatives

Find :

Possible Answers:

Correct answer:

Explanation:

To find  we must use implicit differentiation, which is an application of the chain rule.
Taking  of both sides of the equation, we get

The derivative was found using the following rules:

Note that for every derivative of a function with y, the additional term  appears; this is because of the chain rule, where , so to speak, for the function it appears in.

Using algebra to solve for , we get

 

Example Question #74 : Applications Of Derivatives

Find :

Possible Answers:

Correct answer:

Explanation:

To find  we must use implicit differentiation, which is an application of the chain rule.
Taking  of both sides of the equation, we get

The following derivative rules were used:

Note that for every derivative of a function with y, the additional term  appears; this is because of the chain rule, where y=g(x), so to speak, for the function it appears in.

Using algebra to solve for , we get

Example Question #21 : Implicit Differentiation

Find :

Possible Answers:

Correct answer:

Explanation:

To find  we must use implicit differentiation, which is an application of the chain rule.
Taking  of both sides of the equation, we get

using the following rules:

,

Note that for every derivative of a function with y, the additional term  appears; this is because of the chain rule, where y=g(x), so to speak, for the function it appears in.

Using algebra to solve for , we get

.

 

 

Example Question #22 : Implicit Differentiation

Use implicit differentiation to calculate the equation of the line tangent to the equation  at the point (2,1).

Possible Answers:

Correct answer:

Explanation:

Differentiate both sides of the equation: 

Simplify: 

Use implicit differentiation to differentiate the y term: 

Subtract 4x from both sides of the equation: 

Divide both sides of the equation by 2y: 

Plug in the appropriate values for x and y to find the slope of the tangent line: 

Use slope-intercept form to solve for the equation of the tangent line: 

Plug in the appropriate values of x and y into the equation, to find the equation of the tangent line: 

Solve for b: 

Solution:

Example Question #23 : Implicit Differentiation

Find , where  is a function of x.

Possible Answers:

Correct answer:

Explanation:

To find  we must use implicit differentiation, which is an application of the chain rule.
Taking  of both sides of the equation, we get

and the derivatives were found using the following rules:


Note that for every derivative of a function with z, the additional term appears; this is because of the chain rule, where z=g(x), so to speak, for the function it appears in. 

Using algebra to solve, we get

 

Learning Tools by Varsity Tutors