# SSAT Upper Level Math : How to find the volume of a cylinder

## Example Questions

### Example Question #1331 : Concepts

The height of a cylinder is 3 inches and the radius of the circular end of the cylinder is 3 inches. Give the volume and surface area of the cylinder.

Explanation:

The volume of a cylinder is found by multiplying the area of one end of the cylinder (base) by its height or:

where is the radius of the circular end of the cylinder and is the height of the cylinder. So we can write:

The surface area of the cylinder is given by:

where is the surface area of the cylinder, is the radius of the cylinder and is the height of the cylinder. So we can write:

### Example Question #1 : Know And Use The Formulas For The Volumes Of Cones, Cylinders, And Spheres: Ccss.Math.Content.8.G.C.9

The height of a cylinder is two times the length of the radius of the circular end of a cylinder. If the volume of the cylinder is , what is the height of the cylinder?

Explanation:

The volume of a cylinder is:

where is the radius of the circular end of the cylinder and is the height of the cylinder.

Since , we can substitute that into the volume formula. So we can write:

So we get:

### Example Question #3 : How To Find The Volume Of A Cylinder

The end (base) of a cylinder has an area of square inches. If the height of the cylinder is half of the radius of the base of the cylinder, give the volume of the cylinder.

Explanation:

The area of the end (base) of a cylinder is , so we can write:

The height of the cylinder is half of the radius of the base of the cylinder, that means:

The volume of a cylinder is found by multiplying the area of one end of the cylinder (base) by its height:

or

### Example Question #111 : Volume Of A Three Dimensional Figure

We have two right cylinders. The radius of the base Cylinder 1 is  times more than that of Cylinder 2, and the height of Cylinder 2 is 4 times more than the height of Cylinder 1. The volume of Cylinder 1 is what fraction of the volume of Cylinder 2?

Explanation:

The volume of a cylinder is:

where is the volume of the cylinder,   is the radius of the circular end of the cylinder, and is the height of the cylinder.

So we can write:

and

Now we can summarize the given information:

Now substitute them in the formula:

### Example Question #1 : Know And Use The Formulas For The Volumes Of Cones, Cylinders, And Spheres: Ccss.Math.Content.8.G.C.9

Two right cylinders have the same height. The radius of the base of the first cylinder is two times more than that of the second cylinder. Compare the volume of the two cylinders.

Explanation:

The volume of a cylinder is:

where is the radius of the circular end of the cylinder and is the height of the cylinder. So we can write:

We know that

and

.

So we can write:

### Example Question #111 : Volume Of A Three Dimensional Figure

A cylinder has a diameter of  inches and a height of  inches. Find the volume, in cubic inches, of this cylinder.

Explanation:

Since we are given the diameter, divide that value in half to find the radius.

Now plug this value into the equation for the volume of a cylinder.

### Example Question #1991 : Hspt Mathematics

Find the volume, in cubic inches, of a cylinder that has a radius of  inches and a height of  inches.

Explanation:

The formula to find the volume of a cylinder is .

Now, plug in the given numbers into this equation.

### Example Question #111 : Volume Of A Three Dimensional Figure

Find the volume of the cylinder if the circular base has an area of , and the height of the cylinder is also