### All ISEE Upper Level Quantitative Resources

## Example Questions

### Example Question #21 : Isee Upper Level (Grades 9 12) Quantitative Reasoning

is acute; . Which is the greater quantity?

(a)

(b)

**Possible Answers:**

(a) is greater.

It is impossible to tell from the information given.

(b) is greater.

(a) and (b) are equal.

**Correct answer:**

(b) is greater.

Since is an acute triangle, is an acute angle, and

,

(b) is the greater quantity.

### Example Question #22 : Isee Upper Level (Grades 9 12) Quantitative Reasoning

Given: . . Which is the greater quantity?

(a) 18

(b)

**Possible Answers:**

(a) and (b) are equal

(a) is the greater quantity

It is impossible to determine which is greater from the information given

(b) is the greater quantity

**Correct answer:**

(a) is the greater quantity

Suppose there exists a second triangle such that and . Whether , the angle opposite the longest side, is acute, right, or obtuse can be determined by comparing the sum of the squares of the lengths of the shortest sides to the square of the length of the longest:

, making obtuse, so .

We know that

and

.

Between and , we have two sets of congruent sides, with the included angle of the latter of greater measure than that of the former. It follows from the Side-Angle-Side Inequality (or Hinge) Theorem that between the third sides, is the longer. Therefore,

.

### Example Question #1 : How To Find If Two Triangles Are Similar

Which is the greater quantity?

(a)

(b)

**Possible Answers:**

It is impossible to tell from the information given

(a) and (b) are equal

(b) is greater

(a) is greater

**Correct answer:**

(a) and (b) are equal

, so by definition, the sides are in proportion.

(a)

Substitute and solve for :

(b)

Substitute and solve for :

The two are equal.

### Example Question #2 : How To Find If Two Triangles Are Similar

Which is the greater quantity?

(a)

(b)

**Possible Answers:**

It is impossible to tell from the information given.

(a) is greater.

(b) is greater.

(a) and (b) are equal.

**Correct answer:**

(a) is greater.

, so by definition, the sides are in proportion. Therefore,

.

Substitute:

, so (a) is greater.

### Example Question #23 : Isee Upper Level (Grades 9 12) Quantitative Reasoning

Triangle B has a height that is twice that of Triangle A and a base that is one-half that of Triangle A. Which is the greater quantity?

(a) The area of Triangle A

(b) The area of Triangle B

**Possible Answers:**

(a) is greater.

(b) is greater.

It is impossible to tell from the information given.

(a) and (b) are equal.

**Correct answer:**

(a) and (b) are equal.

Let and be the base and height of Triangle A. Then the base and height of Triangle B are and , respectively.

(a) The area of Triangle A is .

(b) The area of Triangle B is .

Therefore, (a) and (b) are equal.

### Example Question #24 : Isee Upper Level (Grades 9 12) Quantitative Reasoning

Two triangles on the coordinate plane have a vertex at the origin and a vertex at , where .

Triangle A has its third vertex at .

Triangle B has its third vertex at .

Which is the greater quantity?

(a) The area of Triangle A

(b) The area of Triangle B

**Possible Answers:**

(a) and (b) are equal

(a) is greater

It is impossible to tell from the information given

(b) is greater

**Correct answer:**

(b) is greater

(a) Triangle A has as its base the horizontal segment connecting and , the length of which is 10. Its (vertical) altitude is the segment from to this horizontal segment, which is part of the -axis; its height is therefore the -coordinate of this point, or .

The area of Triangle A is therefore

(b) Triangle B has as its base the vertical segment connecting and , the length of which is 10. Its (horizontal) altitude is the segment from to this vertical segment, which is part of the -axis; its height is therefore the -coordinate of this point, or .

The area of Triangle B is therefore

, so . (b), the area of Triangle B, is greater.

### Example Question #25 : Isee Upper Level (Grades 9 12) Quantitative Reasoning

A triangle has sides 30, 40, and 80. Give its area.

**Possible Answers:**

None of the other responses is correct

**Correct answer:**

None of the other responses is correct

By the Triangle Inequality Theorem, the sum of the lengths of the two shorter sides of a triangle must exceed the length of its longest side. However,

;

Therefore, this triangle cannot exist, and the correct answer is "none of the other responses is correct".

### Example Question #26 : Isee Upper Level (Grades 9 12) Quantitative Reasoning

The above depicts Square ; , and are the midpoints of , , and , respectively. Which is the greater quantity?

(a) The area of

(b) The area of

**Possible Answers:**

(a) is the greater quantity

It is impossible to determine which is greater from the information given

(a) and (b) are equal

(b) is the greater quantity

**Correct answer:**

(a) and (b) are equal

For the sake of simplicity, assume that the square has sidelength 2; this reasoning is independent of the actual sidelength.

Since , , and are the midpoints of their respective sides, , as shown in this diagram.

The area of , it being a right triangle, is half the product of the lengths of its legs:

The area of is half the product of the length of a base and the height. Using as the base, and as an altitude:

The two triangles have the same area.

### Example Question #27 : Isee Upper Level (Grades 9 12) Quantitative Reasoning

is an equilateral triangle. Points are the midpoints of , respectively. is constructed.

Which is the greater quantity?

(a) The perimeter of

(b) Twice the perimeter of

**Possible Answers:**

(b) is greater.

(a) and (b) are equal.

It is impossible to tell from the information given.

(a) is greater.

**Correct answer:**

(a) and (b) are equal.

If segments are constructed in which the endpoints form the midpoints of the sides of a triangle, then each of the sides of the smaller triangle is half as long as the side of the larger triangle that it does not touch. Therefore:

The perimeter of is:

,

which is twice the perimeter of .

Note that the fact that the triangle is equilateral is irrelevant.

### Example Question #28 : Isee Upper Level (Grades 9 12) Quantitative Reasoning

Column A Column B

The perimeter The perimeter

of a square with of an equilateral

sides of 4 cm. triangle with a side

of 9 cm.

**Possible Answers:**

There is not enough info to determine a relationship between the columns.

The quantity in Column A is greater.

The quantities in both columns are equal.

The quantity in Column B is greater.

**Correct answer:**

The quantity in Column B is greater.

Perimeter involves adding up all of the sides of the shape. Therefore, the square's perimeter is or 16. An equialteral shape means that all of the sides are equal. Therefore, the perimeter of the triangle is or 27. Therefore, Column B is greater.

Certified Tutor

Certified Tutor