Test: LSAT Reading

Adapted from Are the Planets Inhabited? by E. Walter Maunder (1913)

The first thought that men had concerning the heavenly bodies was an obvious one: they were lights. There was a greater light to rule the day, a lesser light to rule the night, and there were the stars also.

In those days there seemed an immense difference between the earth upon which men stood and the bright objects that shone down upon it from the heavens above. The earth seemed to be vast, dark, and motionless; the celestial lights seemed to be small, and moved and shone. The earth was then regarded as the fixed center of the universe, but the Copernican theory has since deprived it of this pride of place. Yet from another point of view, the new conception of its position involves a promotion, since the earth itself is now regarded as a heavenly body of the same order as some of those that shine down upon us. It is amongst them, and it too moves and shines—shines, as some of them do, by reflecting the light of the sun. Could we transport ourselves to a neighboring world, the earth would seem a star, not distinguishable in kind from the rest.

But as men realized this, they began to ask, “Since this world from a distant standpoint must appear as a star, would not a star, if we could get near enough to it, show itself also as a world? This world teems with life; above all, it is the home of human life. Men and women, gifted with feeling, intelligence, and character, look upward from its surface and watch the shining members of the heavenly host. Are none of these the home of beings gifted with like powers, who watch in their turn the movements of that shining point that is our world?”

This is the meaning of the controversy on the Plurality of Worlds which excited so much interest some sixty years ago, and has been with us more or less ever since. It is the desire to recognize the presence in the orbs around us of beings like ourselves, possessed of personality and intelligence, lodged in an organic body.

This is what is meant when we speak of a world being “inhabited.” It would not, for example, at all content us if we could ascertain that Jupiter was covered by a shoreless ocean, rich in every variety of fish, or that the hard rocks of the Moon were delicately veiled by lichens. Just as no richness of vegetation and no fullness and complexity of animal life would justify an explorer in describing some land that he had discovered as being “inhabited” if no men were there, so we cannot rightly speak of any other world as being “inhabited” if it is not the home of intelligent life. 

On the other hand, of necessity we are precluded from extending our inquiry to the case of disembodied intelligences, if such be conceived possible. All created existences must be conditioned, but if we have no knowledge of what those conditions may be, or means for attaining such knowledge, we cannot discuss them. Nothing can be affirmed, nothing denied, concerning the possibility of intelligences existing on the Moon or even in the Sun if we are unable to ascertain under what limitations those particular intelligences subsist.

The only beings, then, the presence of which would justify us in regarding another world as “inhabited” are such as would justify us in applying that term to a part of our own world. They must possess intelligence and consciousness on the one hand; on the other, they must likewise have corporeal form. True, the form might be imagined as different from that we possess, but, as with ourselves, the intelligent spirit must be lodged in and expressed by a living material body. Our inquiry is thus rendered a physical one; it is the necessities of the living body that must guide us in it; a world unsuited for living organisms is not, in the sense of this enquiry, a “habitable” world.


Which of the following best describes the structure of the passage?

Describing the development of a theoretical model; explaining how this model influenced more recent observations; describing a new application for the kinds of observations influenced by this model; mentioning how a different model could also account for these observations

Describing a scientific problem; laying out some possible solutions to that problem; describing a new theory that addresses some of the common problems in previous models; addressing the limits of how this new theory can be applied

Explaining the history of a scientific discipline; making deductions from the progress of this discipline; describing sufficient conditions for further progress in a particular area; laying out avenues for future investigation

Giving the history of the development of a theory; mentioning a consequence of this development; describing necessary conditions for a state of affairs; drawing conclusions from these conditions

Describing the results of empirical investigations; conducting a thought experiment based on these results; describing further observations that fit both the initial investigation and the thought experiment; creating a new theoretical model

1/4 questions


Access results and powerful study features!

Take 15 seconds to create an account.
Start now! Create your free account and get access to features like:
  • Full length diagnostic tests
  • Invite your friends
  • Access hundreds of practice tests
  • Monitor your progress over time
  • Manage your tests and results
  • Monitor the progress of your class & students
By clicking Create Account you agree that you are at least 13 years old and you agree to the Varsity Tutors LLC Terms of Use and Privacy Policy.
Learning Tools by Varsity Tutors