Asymptotic and Unbounded Behavior
Help Questions
AP Calculus AB › Asymptotic and Unbounded Behavior
Evaluate the following indefinite integral.
Explanation
Use the inverse Power Rule to evaluate the integral. We know that for
. We see that this rule tells us to increase the power of
by 1 and multiply by
Next always add your constant of integration that would be lost in the differentiation. Take the derivative of your answer to check your work.
Evaluate the following indefinite integral.
Explanation
Use the inverse Power Rule to evaluate the integral. We know that for
. But, in this case,
IS equal to
so a special condition of the rule applies. We must instead use
. Evaluate accordingly. Next always add your constant of integration that would be lost in the differentiation. Take the derivative of your answer to check your work.
Evaluate the following indefinite integral.
Explanation
In order to evaluate the indefinite integral, ask yourself, "what expression do I differentiate to get 4". Next, use the power rule and increase the power of by 1. To start, we have
, so in the answer we have
. Next add a constant that would be lost in the differentiation. To check your work, differentiate your answer and see that it matches "4".
Explanation
Explanation
Evaluate the following indefinite integral.
Explanation
Use the inverse Power Rule to evaluate the integral. We know that for
. We see that this rule tells us to increase the power of
by 1 and multiply by
. Next always add your constant of integration that would be lost in the differentiation. Take the derivative of your answer to check your work.
Evaluate the following indefinite integral.
Explanation
In order to evaluate the indefinite integral, ask yourself, "what expression do I differentiate to get 4". Next, use the power rule and increase the power of by 1. To start, we have
, so in the answer we have
. Next add a constant that would be lost in the differentiation. To check your work, differentiate your answer and see that it matches "4".
Explanation
Explanation
Evaluate the following indefinite integral.
Explanation
Use the inverse Power Rule to evaluate the integral. We know that for
. But, in this case,
IS equal to
so a special condition of the rule applies. We must instead use
. Pull the constant "3" out front and evaluate accordingly. Next always add your constant of integration that would be lost in the differentiation. Take the derivative of your answer to check your work.