# High School Math : Understanding Derivatives of Sums, Quotients, and Products

## Example Questions

### Example Question #1 : Understanding The Derivative Of A Sum, Product, Or Quotient

Find the derivative of the following function:

Explanation:

Since this function is a polynomial, we take the derivative of each term separately.

From the power rule, the derivative of

is simply

We can rewrite  as

and using the power rule again, we get a derivative of

or

### Example Question #2 : Understanding The Derivative Of A Sum, Product, Or Quotient

What is

Explanation:

The chain rule is "first times the derivative of the second plus second times derivative of the first".

In this case, that means .

### Example Question #1 : Understanding Derivatives Of Sums, Quotients, And Products

What is the first derivative of ?

Explanation:

Since we're adding terms, we take the derivative of each part separately. For , we can use the power rule, which states that we multiply the variable by the current exponent and then lower the exponent by one. For sine, we use our trigonometric derivative rules.

Remember, .

### Example Question #2 : Understanding Derivatives Of Sums, Quotients, And Products

What is the second derivative of ?

Explanation:

To find the second derivative, we need to start by finding the first one.

Since we're adding terms, we take the derivative of each part separately. For , we can use the power rule, which states that we multiply the variable by the current exponent and then lower the exponent by one. For sine, we use our trigonometric derivative rules.

Remember, .

Now we repeat the process, but using  as our equation.

### Example Question #3 : Understanding The Derivative Of A Sum, Product, Or Quotient

Which of the following best represents ?

Explanation:

The question is just asking for the Quotient Rule formula.

Recall the Quotient Rule is the bottom function times the derivative of the top minus the top function times the derivative of the bottom all divided by the bottom function squared.

Given,

the bottom function is  and the top function is . This makes the bottom derivative  and the top derivative .

Substituting these into the Quotient Rule formula resulting in the following.