### All High School Math Resources

## Example Questions

### Example Question #61 : Calculus I — Derivatives

If what is the slope of the line at .

**Possible Answers:**

**Correct answer:**

The slope at any point on a line is also equal to the derivative. So first we want to find the derivative function of this function and then evaluate it at. So, to find the derivative we will need to use the chain rule. The chain rule says

so if we let and then

since and

Therefore we evaluate at and we get or .

### Example Question #1 : Using The Chain Rule

What is the first derivative of ?

**Possible Answers:**

**Correct answer:**

To solve for the first derivative, we're going to use the chain rule. The chain rule says that when taking the derivative of a nested function, your answer is the derivative of the outside times the derivative of the inside.

Mathematically, it would look like this:

Plug in our equations.

### Example Question #1 : Using The Chain Rule

**Possible Answers:**

**Correct answer:**

For this problem we need to use the chain rule:

### Example Question #2141 : High School Math

Find the derivative of the following function:

**Possible Answers:**

**Correct answer:**

Use -substitution so that .

Then the function becomes .

By the chain rule, .

We calculate each term using the power rule:

Plug in :