Algebra II : Quadratic Roots

Study concepts, example questions & explanations for Algebra II

varsity tutors app store varsity tutors android store

Example Questions

← Previous 1 2 Next →

Example Question #321 : Intermediate Single Variable Algebra

Write a quadratic function in standard form with roots of -1 and 2.

Possible Answers:

Correct answer:

Explanation:

From the zeroes we know

Use FOIL method to obtain:

Example Question #151 : Understanding Quadratic Equations

Select the quadratic equation that has these roots: 

Possible Answers:

None of these.

Correct answer:

Explanation:

FOIL the two factors to find the quadratic equation.

First terms:

Outer terms:

Inner terms:

Last terms:

Simplify:

Example Question #151 : Understanding Quadratic Equations

Solve for a possible root:   

Possible Answers:

Correct answer:

Explanation:

Write the quadratic equation.

The equation  is in the form .

Substitute the proper coefficients into the quadratic equation.

The negative square root can be replaced by the imaginary term .  Simplify square root 60 by common factors of numbers with perfect squares.

Simplify the fraction.

A possible root is:   

Example Question #12 : Quadratic Roots

Solve for the roots, if any:  

Possible Answers:

Correct answer:

Explanation:

Pull out a common factor of negative four.

The term inside the parentheses can be factored.

Set the binomials equal to zero and solve for the roots.  We can ignore the negative four coefficient.

The answers are:  

← Previous 1 2 Next →
Learning Tools by Varsity Tutors