# Calculus 3 : Matrices

## Example Questions

### Example Question #2691 : Calculus 3

Find the matrix product of , where  and

Explanation:

In order to multiply two matrices, , the respective dimensions of each must be of the form  and  to create an  (notation is rows x columns) matrix. Unlike the multiplication of individual values, the order of the matrices does matter.

For a multiplication of the form

The resulting matrix is

The notation may be daunting but numerical examples may elucidate.

We're told that

and

The resulting matrix product is then:

### Example Question #691 : Vectors And Vector Operations

Find the matrix product of , where  and

Explanation:

In order to multiply two matrices, , the respective dimensions of each must be of the form  and  to create an  (notation is rows x columns) matrix. Unlike the multiplication of individual values, the order of the matrices does matter.

For a multiplication of the form

The resulting matrix is

The notation may be daunting but numerical examples may elucidate.

We're told that

and

The resulting matrix product is then:

### Example Question #2693 : Calculus 3

Find the matrix product of , where  and

Explanation:

In order to multiply two matrices, , the respective dimensions of each must be of the form  and  to create an  (notation is rows x columns) matrix. Unlike the multiplication of individual values, the order of the matrices does matter.

For a multiplication of the form

The resulting matrix is

The notation may be daunting but numerical examples may elucidate.

We're told that

and

The resulting matrix product is then:

### Example Question #2694 : Calculus 3

Find the matrix product of , where  and

Explanation:

In order to multiply two matrices, , the respective dimensions of each must be of the form  and  to create an  (notation is rows x columns) matrix. Unlike the multiplication of individual values, the order of the matrices does matter.

For a multiplication of the form

The resulting matrix is

The notation may be daunting but numerical examples may elucidate.

We're told that

and

The resulting matrix product is then:

### Example Question #691 : Vectors And Vector Operations

Find the matrix product of , where  and

Explanation:

In order to multiply two matrices, , the respective dimensions of each must be of the form  and  to create an  (notation is rows x columns) matrix. Unlike the multiplication of individual values, the order of the matrices does matter.

For a multiplication of the form

The resulting matrix is

The notation may be daunting but numerical examples may elucidate.

We're told that

and

The resulting matrix product is then:

### Example Question #692 : Vectors And Vector Operations

Find the matrix product of , where  and

Explanation:

In order to multiply two matrices, , the respective dimensions of each must be of the form  and  to create an  (notation is rows x columns) matrix. Unlike the multiplication of individual values, the order of the matrices does matter.

For a multiplication of the form

The resulting matrix is

The notation may be daunting but numerical examples may elucidate.

We're told that

and

The resulting matrix product is then:

### Example Question #701 : Vectors And Vector Operations

Find the matrix product of , where  and

Explanation:

In order to multiply two matrices, , the respective dimensions of each must be of the form  and  to create an  (notation is rows x columns) matrix. Unlike the multiplication of individual values, the order of the matrices does matter.

For a multiplication of the form

The resulting matrix is

The notation may be daunting but numerical examples may elucidate.

We're told that

and

The resulting matrix product is then:

### Example Question #702 : Vectors And Vector Operations

Find the matrix product of , where  and

Explanation:

In order to multiply two matrices, , the respective dimensions of each must be of the form  and  to create an  (notation is rows x columns) matrix. Unlike the multiplication of individual values, the order of the matrices does matter.

For a multiplication of the form

The resulting matrix is

The notation may be daunting but numerical examples may elucidate.

We're told that

and

The resulting matrix product is then:

### Example Question #703 : Vectors And Vector Operations

Find the matrix product of , where  and

Explanation:

In order to multiply two matrices, , the respective dimensions of each must be of the form  and  to create an  (notation is rows x columns) matrix. Unlike the multiplication of individual values, the order of the matrices does matter.

For a multiplication of the form

The resulting matrix is

The notation may be daunting but numerical examples may elucidate.

We're told that

and

The resulting matrix product is then:

### Example Question #704 : Vectors And Vector Operations

Find the matrix product of , where  and

Explanation:

In order to multiply two matrices, , the respective dimensions of each must be of the form  and  to create an  (notation is rows x columns) matrix. Unlike the multiplication of individual values, the order of the matrices does matter.

For a multiplication of the form

The resulting matrix is

The notation may be daunting but numerical examples may elucidate.

We're told that

and

The resulting matrix product is then: