### All ACT Math Resources

## Example Questions

### Example Question #1 : Variables

Mike wants to sell candy bars for a profit. If he sells each bar for , how much did each bar cost him?

**Possible Answers:**

**Correct answer:**

In order to solve this problem, set up the following equation:

Cross multiply:

Divide:

The original cost of the of each candy bar is

### Example Question #2 : Variables

Choose the answer that is the simplest form of the following expression of monomial quotients:

**Possible Answers:**

**Correct answer:**

To divide monomial quotients, simply invert the divisor and multiply:

Then, reduce:

### Example Question #3 : Variables

Choose the answer that is the simplest form of the following expression of monomial quotients:

**Possible Answers:**

**Correct answer:**

To find your answer, you have to invert the divisor and multiply across:

Then, reduce:

### Example Question #4 : Variables

Multiply:

**Possible Answers:**

**Correct answer:**

To solve you must multiply by both terms in

### Example Question #5 : Variables

Multiply:

**Possible Answers:**

**Correct answer:**

Multiply by both terms in

### Example Question #6 : Variables

Multiply

**Possible Answers:**

None of the other answers

**Correct answer:**

When multiplying a polynomial by a monomial, each term in the polynomial gets multiplied by the monomial. Calculate each term one at a time, then add the results to get the final answer. In this case, we start by multiplying . and , thus we get . For the second term of the polynomial, we multiply and , resulting in . Finally, we multiply and , resulting in . Adding the three terms that we just found, we come to the answer of .

### Example Question #7 : Variables

Choose the answer that is the best solution to the following expression of monomial quotients:

**Possible Answers:**

**Correct answer:**

To multiply monomial quotients, treat them as you would any other fraction. Combine like terms wherever possible:

Then, you need to reduce:

### Example Question #8 : Variables

Choose the answer that is the simplest form of the following expression of monomial quotients:

**Possible Answers:**

**Correct answer:**

To simplify, first multiply across:

Then, reduce:

Certified Tutor

Certified Tutor