Quadratic Functions

Help Questions

Math › Quadratic Functions

Questions 1 - 10
1

Find the center and radius of the circle defined by the equation:

Explanation

The equation of a circle is: where is the radius and is the center.

In this problem, the equation is already in the format required to determine center and radius. To find the -coordinate of the center, we must find the value of that makes equal to 0, which is 3. We do the same to find the y-coordinate of the center and find that . To find the radius we take the square root of the constant on the right side of the equation which is 6.

2

Based on the figure below, which line depicts a quadratic function?

Question_10

Red line

Blue line

Green line

Purple line

None of them

Explanation

A parabola is one example of a quadratic function, regardless of whether it points upwards or downwards.

The red line represents a quadratic function and will have a formula similar to .

The blue line represents a linear function and will have a formula similar to .

The green line represents an exponential function and will have a formula similar to .

The purple line represents an absolute value function and will have a formula similar to .

3

Find the center and radius of the circle defined by the equation:

Explanation

The equation of a circle is: where is the radius and is the center.

In this problem, the equation is already in the format required to determine center and radius. To find the -coordinate of the center, we must find the value of that makes equal to 0, which is 3. We do the same to find the y-coordinate of the center and find that . To find the radius we take the square root of the constant on the right side of the equation which is 6.

4

Find the center and radius of the circle defined by the equation:

Explanation

The equation of a circle is: where is the radius and is the center.

In this problem, the equation is already in the format required to determine center and radius. To find the -coordinate of the center, we must find the value of that makes equal to 0, which is 3. We do the same to find the y-coordinate of the center and find that . To find the radius we take the square root of the constant on the right side of the equation which is 6.

5

Based on the figure below, which line depicts a quadratic function?

Question_10

Red line

Blue line

Green line

Purple line

None of them

Explanation

A parabola is one example of a quadratic function, regardless of whether it points upwards or downwards.

The red line represents a quadratic function and will have a formula similar to .

The blue line represents a linear function and will have a formula similar to .

The green line represents an exponential function and will have a formula similar to .

The purple line represents an absolute value function and will have a formula similar to .

6

Based on the figure below, which line depicts a quadratic function?

Question_10

Red line

Blue line

Green line

Purple line

None of them

Explanation

A parabola is one example of a quadratic function, regardless of whether it points upwards or downwards.

The red line represents a quadratic function and will have a formula similar to .

The blue line represents a linear function and will have a formula similar to .

The green line represents an exponential function and will have a formula similar to .

The purple line represents an absolute value function and will have a formula similar to .

7

Which of the following functions represents a parabola?

Explanation

A parabola is a curve that can be represented by a quadratic equation. The only quadratic here is represented by the function , while the others represent straight lines, circles, and other curves.

8

Find the center and radius of the circle defined by the equation:

Explanation

The equation of a circle is: where is the radius and is the center.

In this problem, the equation is already in the format required to determine center and radius. To find the -coordinate of the center, we must find the value of that makes equal to , which is . We do the same to find the y-coordinate of the center and find that . To find the radius we take the square root of the constant on the right side of the equation which is 10.

9

Which of the following functions represents a parabola?

Explanation

A parabola is a curve that can be represented by a quadratic equation. The only quadratic here is represented by the function , while the others represent straight lines, circles, and other curves.

10

Find the center and radius of the circle defined by the equation:

Explanation

The equation of a circle is: where is the radius and is the center.

In this problem, the equation is already in the format required to determine center and radius. To find the -coordinate of the center, we must find the value of that makes equal to , which is . We do the same to find the y-coordinate of the center and find that . To find the radius we take the square root of the constant on the right side of the equation which is 10.

Page 1 of 3