Functions, Graphs, and Limits

Help Questions

AP Calculus BC › Functions, Graphs, and Limits

Questions 1 - 10
1

What is the polar form of ?

None of the above

Explanation

We can convert from rectangular to polar form by using the following trigonometric identities: and . Given , then:

Dividing both sides by , we get:

2

What is the polar form of ?

None of the above

Explanation

We can convert from rectangular to polar form by using the following trigonometric identities: and . Given , then:

Dividing both sides by , we get:

3

What is the polar form of ?

None of the above

Explanation

We can convert from rectangular to polar form by using the following trigonometric identities: and . Given , then:

Dividing both sides by , we get:

4

Draw the graph of where .

R_sin2x

R_cos2x

R_sinx

R_sinx_1

Faker_cosx

Explanation

Because this function has a period of , the amplitude of the graph appear at a reference angle of (angles halfway between the angles of the axes).

Between and the radius approaches 1 from 0.

Between and , the radius approaches 0 from 1.

From to the radius approaches -1 from 0 and is drawn in the opposite quadrant, the fourth quadrant because it has a negative radius.

Between and , the radius approaches 0 from -1, and is also drawn in the fourth quadrant.

From and , the radius approaches 1 from 0. Between and , the radius approaches 0 from 1.

Then between and the radius approaches -1 from 0. Because it is a negative radius, it is drawn in the opposite quadrant, the second quadrant. Likewise, as the radius approaches 0 from -1. Between and , the curve is drawn in the second quadrant.

5

Draw the graph of where .

R_sin2x

R_cos2x

R_sinx

R_sinx_1

Faker_cosx

Explanation

Because this function has a period of , the amplitude of the graph appear at a reference angle of (angles halfway between the angles of the axes).

Between and the radius approaches 1 from 0.

Between and , the radius approaches 0 from 1.

From to the radius approaches -1 from 0 and is drawn in the opposite quadrant, the fourth quadrant because it has a negative radius.

Between and , the radius approaches 0 from -1, and is also drawn in the fourth quadrant.

From and , the radius approaches 1 from 0. Between and , the radius approaches 0 from 1.

Then between and the radius approaches -1 from 0. Because it is a negative radius, it is drawn in the opposite quadrant, the second quadrant. Likewise, as the radius approaches 0 from -1. Between and , the curve is drawn in the second quadrant.

6

Draw the graph of where .

R_sin2x

R_cos2x

R_sinx

R_sinx_1

Faker_cosx

Explanation

Because this function has a period of , the amplitude of the graph appear at a reference angle of (angles halfway between the angles of the axes).

Between and the radius approaches 1 from 0.

Between and , the radius approaches 0 from 1.

From to the radius approaches -1 from 0 and is drawn in the opposite quadrant, the fourth quadrant because it has a negative radius.

Between and , the radius approaches 0 from -1, and is also drawn in the fourth quadrant.

From and , the radius approaches 1 from 0. Between and , the radius approaches 0 from 1.

Then between and the radius approaches -1 from 0. Because it is a negative radius, it is drawn in the opposite quadrant, the second quadrant. Likewise, as the radius approaches 0 from -1. Between and , the curve is drawn in the second quadrant.

7

Given points and , what is the vector form of the distance between the points?

Explanation

In order to derive the vector form of the distance between two points, we must find the difference between the , , and elements of the points.

That is, for any point and , the distance is the vector .

Subbing in our original points and , we get:

8

Given points and , what is the vector form of the distance between the points?

Explanation

In order to derive the vector form of the distance between two points, we must find the difference between the , , and elements of the points.

That is, for any point and , the distance is the vector .

Subbing in our original points and , we get:

9

Given points and , what is the vector form of the distance between the points?

Explanation

In order to derive the vector form of the distance between two points, we must find the difference between the , , and elements of the points.

That is, for any point and , the distance is the vector .

Subbing in our original points and , we get:

10

If and , what is in terms of (rectangular form)?

Explanation

Given and , we can find in terms of by isolating in both equations:

Since both of these transformations equal , we can set them equal to each other:

Page 1 of 23