How to find the greatest or least number of combinations

Help Questions

PSAT Math › How to find the greatest or least number of combinations

Questions 1 - 10
1

An ice cream parlor serves 36 ice cream flavors. You can order any flavor in a small, medium or large and can choose between a waffle cone and a cup. How many possible combinations could you possibly order?

72

108

144

172

216

Explanation

36 possible flavors * 3 possible sizes * 2 possible cones = 216 possible combinations.

2

Shannon decided to go to nearby café for lunch. She can have a sandwich made on either wheat or white bread. The café offers cheddar, Swiss, and American for cheese choices. For meat, Shannon can choose ham, turkey, bologna, roast beef, or salami. How many cheese and meat sandwich options does Shannon have to choose from?

10

20

25

30

35

Explanation

2 bread choices * 3 cheese choices * 5 meat choices = 30 sandwich choices

3

If a series of license plates is to be produced that all have the same pattern of three letters followed by three numbers, roughly how many alphanumeric combinations are possible?

1 thousand

18 thousand

11 million

18 million

180 million

Explanation

The total number of possible combinations of a series of items is the product of the total possibility for each of the items. Thus, for the letters, there are 26 possibilities for each of the 3 slots, and for the numbers, there are 10 possibilities for each of the 3 slots. The total number of combinations is then: 26 x 26 x 26 x 10 x 10 x 10 = 17,576,000 ≈ 18 million.

4

A baker has four different types of frosting, three different kinds of sprinkles, and 8 different cookie cutters. How many different cookie combinations can the baker create if each cookie has one type of frosting and one type of sprinkle?

15

24

48

96

Explanation

Since this a combination problem and we want to know how many different ways the cookies can be created we can solve this using the Fundamental counting principle. 4 x 3 x 8 = 96

Multiplying each of the possible choices together.

5

8 people locked in a room take turns holding hands with each person only once. How many hand holdings take place?

28

21

15

24

Explanation

The first person holds 7 hands. The second holds six by virtue of already having help the first person’s hand. This continues until through all 8 people. 7+6+5+4+3+2+1=28.

6

The art club must choose a leadership committee of 3 students. If any

member can be on the committee, how many different combnations of 3

students can be selected from the 15 members of the art club?

Explanation

7

Mark has 5 pants and 7 shirts in his closet. He wants to wear a different pant/shirt combination each day without buying new clothes for as long as he can. How many weeks can he do this for?

4

5

6

7

8

Explanation

The fundamental counting principle says that if you want to determine the number of ways that two independent events can happen, multiply the number of ways each event can happen together. In this case, there are 5 * 7, or 35 unique combinations of pants & shirts Mark can wear. If he wears one combination each day, he can last 35 days, or 5 weeks, without buying new clothes.

8

Twenty students enter a contest at school. The contest offers a first, second, and third prize. How many different combinations of 1st, 2nd, and 3rd place winners can there be?

20

400

4620

6840

8000

Explanation

This is a permutation problem, because we are looking for the number of groups of winners. Consider the three positions, and how many choices there are for each position: There are 20 choices for 1st place, 19 for 2nd place, and 18 for 3rd place.

20, 19, 18

Multiply to get 6840.

9

At a deli you can choose from either Italian bread, whole wheat bread, or sourdough bread. You can choose turkey or roast beef as your meat and provolone or mozzarella as your cheese. If you have to choose a bread, a meat, and a cheese, how many possible sandwich combinations can you have?

7

8

10

12

14

Explanation

You have 3 possible types of bread, 2 possible types of meat, and 2 possible types of cheese. Multiplying them out you get 3*2*2, giving you 12 possible combinations.

10

If there are 8 points in a plane, and no 3 of the points lie along the same line, how many unique lines can be drawn between pairs of these 8 points?

27

28

29

30

Explanation

The formula for the number of lines determined by n points, no three of which are “collinear” (on the same line), is n(n-1)/2. To find the number of lines determined by 8 points, we use 8 in the formula to find 8(8-1)/2=8(7)/2=56/2=28. (The formula is derived from two facts: the fact that each point forms a line with each other point, hence n(n-1), and the fact that this relationship is symmetric (i.e. if a forms a line with b, then b forms a line with a), hence dividing by 2.)

Page 1 of 2
Return to subject