Help with Meso Compounds - Organic Chemistry
Card 1 of 24
Which of the following are meso compounds?
I. 2,4-dichloropentane
II. 1,3-dimethylcyclopentane
III. 2,3-dichloropentane
Which of the following are meso compounds?
I. 2,4-dichloropentane
II. 1,3-dimethylcyclopentane
III. 2,3-dichloropentane
Tap to reveal answer
A meso compound has at least two stereocenters, but is not chiral due to an axis of symmetry. Each of the given molecules have two stereocenters. However, if you cut the first molecule in half, you would get two identical half molecules. If you cut the second molecule in half, the same would occur. Thus, I and II have meso stereoisomers. To solve this question, it is easiest to draw out the given molecules.
A meso compound has at least two stereocenters, but is not chiral due to an axis of symmetry. Each of the given molecules have two stereocenters. However, if you cut the first molecule in half, you would get two identical half molecules. If you cut the second molecule in half, the same would occur. Thus, I and II have meso stereoisomers. To solve this question, it is easiest to draw out the given molecules.
← Didn't Know|Knew It →

Which of these molecules is a meso compound?

Which of these molecules is a meso compound?
Tap to reveal answer
A molecule is meso if it contains at least two stereocenters, but is rendered optically inactive by internal structural symmetry. In other words, a meso compound may be split in half in some way such that portions on either side of an imaginary line are mirror images. Note: The absolute configurations of a meso compound with two stereocenters are opposite (R/S). The internal symmetry that makes molecule III a meso compound is best conveyed through a Haworth projection:

A molecule is meso if it contains at least two stereocenters, but is rendered optically inactive by internal structural symmetry. In other words, a meso compound may be split in half in some way such that portions on either side of an imaginary line are mirror images. Note: The absolute configurations of a meso compound with two stereocenters are opposite (R/S). The internal symmetry that makes molecule III a meso compound is best conveyed through a Haworth projection:

← Didn't Know|Knew It →

Which of the given chair conformations represents a meso compound?

Which of the given chair conformations represents a meso compound?
Tap to reveal answer
Meso compounds are characterized by an internal plane of symmetry that renders them achiral despite the presence of chiral center(s). For the given six member rings, the key to identifying the meso compound is finding the structure in which the two chlorine atoms are on the same side of the ring. It is also crucial to recognize that six member rings undergo rapid chair-flipping. Identical substituents on the same side of the ring quickly alternate between equatorial and axial positions such that they are on average of the same orientation. Compound III is the only structure given in which the chlorine atoms are facing in the same direction (up in the given conformation). Although one is equatorial and the other is axial, observation of the corresponding Haworth projection (see below) shows that there is indeed an internal plane of symmetry. Thus, compound III is meso.

Meso compounds are characterized by an internal plane of symmetry that renders them achiral despite the presence of chiral center(s). For the given six member rings, the key to identifying the meso compound is finding the structure in which the two chlorine atoms are on the same side of the ring. It is also crucial to recognize that six member rings undergo rapid chair-flipping. Identical substituents on the same side of the ring quickly alternate between equatorial and axial positions such that they are on average of the same orientation. Compound III is the only structure given in which the chlorine atoms are facing in the same direction (up in the given conformation). Although one is equatorial and the other is axial, observation of the corresponding Haworth projection (see below) shows that there is indeed an internal plane of symmetry. Thus, compound III is meso.

← Didn't Know|Knew It →
How many possible stereoisomers does the product of the following reaction have?

How many possible stereoisomers does the product of the following reaction have?

Tap to reveal answer

This is the product of the given reaction. Remember, anti elimination is favored over the Zaitsev product. All possible stereoisomers with methyl groups syn are meso compounds. Of the possible stereoisomers with methyl groups anti, there are two pairs of identical structures. Thus there are only 2 possible stereoisomers.

This is the product of the given reaction. Remember, anti elimination is favored over the Zaitsev product. All possible stereoisomers with methyl groups syn are meso compounds. Of the possible stereoisomers with methyl groups anti, there are two pairs of identical structures. Thus there are only 2 possible stereoisomers.
← Didn't Know|Knew It →

How many configurational stereoisomers exist for this structure?

How many configurational stereoisomers exist for this structure?
Tap to reveal answer
There are two tetrahedral asymmetrical stereocenters in this molecule (the carbon atoms attached to each of the chlorine atoms). Thus, the combinations of R and S include RR, RS, SR, and SS. Note the plane of symmetry in the molecule; RS and SR are the same molecule (meso compounds). Thus, there are three distinct configurational stereoisomers of this compound.
There are two tetrahedral asymmetrical stereocenters in this molecule (the carbon atoms attached to each of the chlorine atoms). Thus, the combinations of R and S include RR, RS, SR, and SS. Note the plane of symmetry in the molecule; RS and SR are the same molecule (meso compounds). Thus, there are three distinct configurational stereoisomers of this compound.
← Didn't Know|Knew It →

How many of the existing configurational stereoisomers are chiral?

How many of the existing configurational stereoisomers are chiral?
Tap to reveal answer
There are three configurational stereoisomers. These include the RS, SS, and RR isomers. Since one of them, the RS isomer, has a plane of symmetry, it is achiral, and the other two are chiral.
There are three configurational stereoisomers. These include the RS, SS, and RR isomers. Since one of them, the RS isomer, has a plane of symmetry, it is achiral, and the other two are chiral.
← Didn't Know|Knew It →

Which of these molecules is a meso compound?

Which of these molecules is a meso compound?
Tap to reveal answer
A molecule is meso if it contains at least two stereocenters, but is rendered optically inactive by internal structural symmetry. In other words, a meso compound may be split in half in some way such that portions on either side of an imaginary line are mirror images. Note: The absolute configurations of a meso compound with two stereocenters are opposite (R/S). The internal symmetry that makes molecule III a meso compound is best conveyed through a Haworth projection:

A molecule is meso if it contains at least two stereocenters, but is rendered optically inactive by internal structural symmetry. In other words, a meso compound may be split in half in some way such that portions on either side of an imaginary line are mirror images. Note: The absolute configurations of a meso compound with two stereocenters are opposite (R/S). The internal symmetry that makes molecule III a meso compound is best conveyed through a Haworth projection:

← Didn't Know|Knew It →
Which of the following are meso compounds?
I. 2,4-dichloropentane
II. 1,3-dimethylcyclopentane
III. 2,3-dichloropentane
Which of the following are meso compounds?
I. 2,4-dichloropentane
II. 1,3-dimethylcyclopentane
III. 2,3-dichloropentane
Tap to reveal answer
A meso compound has at least two stereocenters, but is not chiral due to an axis of symmetry. Each of the given molecules have two stereocenters. However, if you cut the first molecule in half, you would get two identical half molecules. If you cut the second molecule in half, the same would occur. Thus, I and II have meso stereoisomers. To solve this question, it is easiest to draw out the given molecules.
A meso compound has at least two stereocenters, but is not chiral due to an axis of symmetry. Each of the given molecules have two stereocenters. However, if you cut the first molecule in half, you would get two identical half molecules. If you cut the second molecule in half, the same would occur. Thus, I and II have meso stereoisomers. To solve this question, it is easiest to draw out the given molecules.
← Didn't Know|Knew It →

Which of the given chair conformations represents a meso compound?

Which of the given chair conformations represents a meso compound?
Tap to reveal answer
Meso compounds are characterized by an internal plane of symmetry that renders them achiral despite the presence of chiral center(s). For the given six member rings, the key to identifying the meso compound is finding the structure in which the two chlorine atoms are on the same side of the ring. It is also crucial to recognize that six member rings undergo rapid chair-flipping. Identical substituents on the same side of the ring quickly alternate between equatorial and axial positions such that they are on average of the same orientation. Compound III is the only structure given in which the chlorine atoms are facing in the same direction (up in the given conformation). Although one is equatorial and the other is axial, observation of the corresponding Haworth projection (see below) shows that there is indeed an internal plane of symmetry. Thus, compound III is meso.

Meso compounds are characterized by an internal plane of symmetry that renders them achiral despite the presence of chiral center(s). For the given six member rings, the key to identifying the meso compound is finding the structure in which the two chlorine atoms are on the same side of the ring. It is also crucial to recognize that six member rings undergo rapid chair-flipping. Identical substituents on the same side of the ring quickly alternate between equatorial and axial positions such that they are on average of the same orientation. Compound III is the only structure given in which the chlorine atoms are facing in the same direction (up in the given conformation). Although one is equatorial and the other is axial, observation of the corresponding Haworth projection (see below) shows that there is indeed an internal plane of symmetry. Thus, compound III is meso.

← Didn't Know|Knew It →
How many possible stereoisomers does the product of the following reaction have?

How many possible stereoisomers does the product of the following reaction have?

Tap to reveal answer

This is the product of the given reaction. Remember, anti elimination is favored over the Zaitsev product. All possible stereoisomers with methyl groups syn are meso compounds. Of the possible stereoisomers with methyl groups anti, there are two pairs of identical structures. Thus there are only 2 possible stereoisomers.

This is the product of the given reaction. Remember, anti elimination is favored over the Zaitsev product. All possible stereoisomers with methyl groups syn are meso compounds. Of the possible stereoisomers with methyl groups anti, there are two pairs of identical structures. Thus there are only 2 possible stereoisomers.
← Didn't Know|Knew It →

How many configurational stereoisomers exist for this structure?

How many configurational stereoisomers exist for this structure?
Tap to reveal answer
There are two tetrahedral asymmetrical stereocenters in this molecule (the carbon atoms attached to each of the chlorine atoms). Thus, the combinations of R and S include RR, RS, SR, and SS. Note the plane of symmetry in the molecule; RS and SR are the same molecule (meso compounds). Thus, there are three distinct configurational stereoisomers of this compound.
There are two tetrahedral asymmetrical stereocenters in this molecule (the carbon atoms attached to each of the chlorine atoms). Thus, the combinations of R and S include RR, RS, SR, and SS. Note the plane of symmetry in the molecule; RS and SR are the same molecule (meso compounds). Thus, there are three distinct configurational stereoisomers of this compound.
← Didn't Know|Knew It →

How many of the existing configurational stereoisomers are chiral?

How many of the existing configurational stereoisomers are chiral?
Tap to reveal answer
There are three configurational stereoisomers. These include the RS, SS, and RR isomers. Since one of them, the RS isomer, has a plane of symmetry, it is achiral, and the other two are chiral.
There are three configurational stereoisomers. These include the RS, SS, and RR isomers. Since one of them, the RS isomer, has a plane of symmetry, it is achiral, and the other two are chiral.
← Didn't Know|Knew It →
Which of the following are meso compounds?
I. 2,4-dichloropentane
II. 1,3-dimethylcyclopentane
III. 2,3-dichloropentane
Which of the following are meso compounds?
I. 2,4-dichloropentane
II. 1,3-dimethylcyclopentane
III. 2,3-dichloropentane
Tap to reveal answer
A meso compound has at least two stereocenters, but is not chiral due to an axis of symmetry. Each of the given molecules have two stereocenters. However, if you cut the first molecule in half, you would get two identical half molecules. If you cut the second molecule in half, the same would occur. Thus, I and II have meso stereoisomers. To solve this question, it is easiest to draw out the given molecules.
A meso compound has at least two stereocenters, but is not chiral due to an axis of symmetry. Each of the given molecules have two stereocenters. However, if you cut the first molecule in half, you would get two identical half molecules. If you cut the second molecule in half, the same would occur. Thus, I and II have meso stereoisomers. To solve this question, it is easiest to draw out the given molecules.
← Didn't Know|Knew It →

Which of these molecules is a meso compound?

Which of these molecules is a meso compound?
Tap to reveal answer
A molecule is meso if it contains at least two stereocenters, but is rendered optically inactive by internal structural symmetry. In other words, a meso compound may be split in half in some way such that portions on either side of an imaginary line are mirror images. Note: The absolute configurations of a meso compound with two stereocenters are opposite (R/S). The internal symmetry that makes molecule III a meso compound is best conveyed through a Haworth projection:

A molecule is meso if it contains at least two stereocenters, but is rendered optically inactive by internal structural symmetry. In other words, a meso compound may be split in half in some way such that portions on either side of an imaginary line are mirror images. Note: The absolute configurations of a meso compound with two stereocenters are opposite (R/S). The internal symmetry that makes molecule III a meso compound is best conveyed through a Haworth projection:

← Didn't Know|Knew It →

Which of the given chair conformations represents a meso compound?

Which of the given chair conformations represents a meso compound?
Tap to reveal answer
Meso compounds are characterized by an internal plane of symmetry that renders them achiral despite the presence of chiral center(s). For the given six member rings, the key to identifying the meso compound is finding the structure in which the two chlorine atoms are on the same side of the ring. It is also crucial to recognize that six member rings undergo rapid chair-flipping. Identical substituents on the same side of the ring quickly alternate between equatorial and axial positions such that they are on average of the same orientation. Compound III is the only structure given in which the chlorine atoms are facing in the same direction (up in the given conformation). Although one is equatorial and the other is axial, observation of the corresponding Haworth projection (see below) shows that there is indeed an internal plane of symmetry. Thus, compound III is meso.

Meso compounds are characterized by an internal plane of symmetry that renders them achiral despite the presence of chiral center(s). For the given six member rings, the key to identifying the meso compound is finding the structure in which the two chlorine atoms are on the same side of the ring. It is also crucial to recognize that six member rings undergo rapid chair-flipping. Identical substituents on the same side of the ring quickly alternate between equatorial and axial positions such that they are on average of the same orientation. Compound III is the only structure given in which the chlorine atoms are facing in the same direction (up in the given conformation). Although one is equatorial and the other is axial, observation of the corresponding Haworth projection (see below) shows that there is indeed an internal plane of symmetry. Thus, compound III is meso.

← Didn't Know|Knew It →
How many possible stereoisomers does the product of the following reaction have?

How many possible stereoisomers does the product of the following reaction have?

Tap to reveal answer

This is the product of the given reaction. Remember, anti elimination is favored over the Zaitsev product. All possible stereoisomers with methyl groups syn are meso compounds. Of the possible stereoisomers with methyl groups anti, there are two pairs of identical structures. Thus there are only 2 possible stereoisomers.

This is the product of the given reaction. Remember, anti elimination is favored over the Zaitsev product. All possible stereoisomers with methyl groups syn are meso compounds. Of the possible stereoisomers with methyl groups anti, there are two pairs of identical structures. Thus there are only 2 possible stereoisomers.
← Didn't Know|Knew It →

How many configurational stereoisomers exist for this structure?

How many configurational stereoisomers exist for this structure?
Tap to reveal answer
There are two tetrahedral asymmetrical stereocenters in this molecule (the carbon atoms attached to each of the chlorine atoms). Thus, the combinations of R and S include RR, RS, SR, and SS. Note the plane of symmetry in the molecule; RS and SR are the same molecule (meso compounds). Thus, there are three distinct configurational stereoisomers of this compound.
There are two tetrahedral asymmetrical stereocenters in this molecule (the carbon atoms attached to each of the chlorine atoms). Thus, the combinations of R and S include RR, RS, SR, and SS. Note the plane of symmetry in the molecule; RS and SR are the same molecule (meso compounds). Thus, there are three distinct configurational stereoisomers of this compound.
← Didn't Know|Knew It →

How many of the existing configurational stereoisomers are chiral?

How many of the existing configurational stereoisomers are chiral?
Tap to reveal answer
There are three configurational stereoisomers. These include the RS, SS, and RR isomers. Since one of them, the RS isomer, has a plane of symmetry, it is achiral, and the other two are chiral.
There are three configurational stereoisomers. These include the RS, SS, and RR isomers. Since one of them, the RS isomer, has a plane of symmetry, it is achiral, and the other two are chiral.
← Didn't Know|Knew It →

Which of these molecules is a meso compound?

Which of these molecules is a meso compound?
Tap to reveal answer
A molecule is meso if it contains at least two stereocenters, but is rendered optically inactive by internal structural symmetry. In other words, a meso compound may be split in half in some way such that portions on either side of an imaginary line are mirror images. Note: The absolute configurations of a meso compound with two stereocenters are opposite (R/S). The internal symmetry that makes molecule III a meso compound is best conveyed through a Haworth projection:

A molecule is meso if it contains at least two stereocenters, but is rendered optically inactive by internal structural symmetry. In other words, a meso compound may be split in half in some way such that portions on either side of an imaginary line are mirror images. Note: The absolute configurations of a meso compound with two stereocenters are opposite (R/S). The internal symmetry that makes molecule III a meso compound is best conveyed through a Haworth projection:

← Didn't Know|Knew It →
Which of the following are meso compounds?
I. 2,4-dichloropentane
II. 1,3-dimethylcyclopentane
III. 2,3-dichloropentane
Which of the following are meso compounds?
I. 2,4-dichloropentane
II. 1,3-dimethylcyclopentane
III. 2,3-dichloropentane
Tap to reveal answer
A meso compound has at least two stereocenters, but is not chiral due to an axis of symmetry. Each of the given molecules have two stereocenters. However, if you cut the first molecule in half, you would get two identical half molecules. If you cut the second molecule in half, the same would occur. Thus, I and II have meso stereoisomers. To solve this question, it is easiest to draw out the given molecules.
A meso compound has at least two stereocenters, but is not chiral due to an axis of symmetry. Each of the given molecules have two stereocenters. However, if you cut the first molecule in half, you would get two identical half molecules. If you cut the second molecule in half, the same would occur. Thus, I and II have meso stereoisomers. To solve this question, it is easiest to draw out the given molecules.
← Didn't Know|Knew It →