ISEE Upper Level Quantitative Reasoning › How to find an angle
and
are supplementary;
and
are complementary.
.
What is ?
Supplementary angles and complementary angles have measures totaling and
, respectively.
, so its supplement
has measure
, the complement of
, has measure
Examine the above diagram. What is ?
By angle addition,
Note: Figure NOT drawn to scale.
In the above figure, and
. Which of the following is equal to
?
and
form a linear pair, so their angle measures total
. Set up and solve the following equation:
Two angles which form a linear pair have measures and
. Which is the lesser of the measures (or the common measure) of the two angles?
Two angles that form a linear pair are supplementary - that is, they have measures that total . Therefore, we set and solve for
in this equation:
The two angles have measure
and
is the lesser of the two measures and is the correct choice.
A line intersects parallel lines
and
.
and
are corresponding angles;
and
are same side interior angles.
Evaluate .
When a transversal such as crosses two parallel lines, two corresponding angles - angles in the same relative position to their respective lines - are congruent. Therefore,
Two same-side interior angles are supplementary - that is, their angle measures total 180 - so
We can solve this system by the substitution method as follows:
Backsolve:
, which is the correct response.
Figure NOT drawn to scale
The above figure shows Trapezoid , with
and
tangent to the circle.
; evaluate
.
By the Same-Side Interior Angle Theorem, since ,
and
are supplementary - that is, their degree measures total
. Therefore,
is an inscribed angle, so the arc it intercepts,
, has twice its degree measure;
.
The corresponding major arc, , has as its measure
The measure of an angle formed by two tangents to a circle is equal to half the difference of those of its intercepted arcs:
Again, by the Same-Side Interior Angles Theorem, and
are supplementary, so
Examine the above diagram. If , give
in terms of
.
The two marked angles are same-side exterior angles of parallel lines, which are supplementary - that is, their measures have sum 180. We can solve for in this equation:
Examine the above diagram. Which of the following statements must be true whether or not and
are parallel?
Four statements can be eliminated by the various parallel theorems and postulates. Congruence of alternate interior angles or corresponding angles forces the lines to be parallel, so
and
.
Also, if same-side interior angles or same-side exterior angles are supplementary, the lines are parallel, so
and
.
However, whether or not
since they are vertical angles, which are always congruent.
Examine the above diagram. If , give
in terms of
.
The two marked angles are same-side interior angles of parallel lines, which are supplementary - that is, their measures have sum 180. We can solve for in this equation:
Two vertical angles have measures and
. Which is the lesser of the measures (or the common measure) of the two angles?
Two vertical angles - angles which share a vertex and whose union is a pair of lines - have the same measure. Therefore, we set up and solve the equation