How to multiply polynomials - PSAT Math
Card 0 of 14
F(x) = $x^{3}$ + $x^{2}$ - x + 2
and
G(x) = $x^{2}$ + 5
What is
?
F(x) = $x^{3}$ + $x^{2}$ - x + 2
and
G(x) = $x^{2}$ + 5
What is ?
(FG)(x) = F(x)G(x) so we multiply the two function to get the answer. We use $x^{m}$$x^{n}$ = $x^{m+n}$
(FG)(x) = F(x)G(x) so we multiply the two function to get the answer. We use $x^{m}$$x^{n}$ = $x^{m+n}$
Compare your answer with the correct one above
Multiply:

Multiply:

](https://vt-vtwa-assets.varsitytutors.com/vt-vtwa/uploads/formula_image/image/210807/gif.latex)
This product fits the sum of cubes pattern, where
:

So
](https://vt-vtwa-assets.varsitytutors.com/vt-vtwa/uploads/formula_image/image/210810/gif.latex)

This product fits the sum of cubes pattern, where :
So
Compare your answer with the correct one above
F(x) = $x^{3}$ + $x^{2}$ - x + 2
and
G(x) = $x^{2}$ + 5
What is
?
F(x) = $x^{3}$ + $x^{2}$ - x + 2
and
G(x) = $x^{2}$ + 5
What is ?
(FG)(x) = F(x)G(x) so we multiply the two function to get the answer. We use $x^{m}$$x^{n}$ = $x^{m+n}$
(FG)(x) = F(x)G(x) so we multiply the two function to get the answer. We use $x^{m}$$x^{n}$ = $x^{m+n}$
Compare your answer with the correct one above
Multiply:

Multiply:

](https://vt-vtwa-assets.varsitytutors.com/vt-vtwa/uploads/formula_image/image/210807/gif.latex)
This product fits the sum of cubes pattern, where
:

So
](https://vt-vtwa-assets.varsitytutors.com/vt-vtwa/uploads/formula_image/image/210810/gif.latex)

This product fits the sum of cubes pattern, where :
So
Compare your answer with the correct one above
F(x) = $x^{3}$ + $x^{2}$ - x + 2
and
G(x) = $x^{2}$ + 5
What is
?
F(x) = $x^{3}$ + $x^{2}$ - x + 2
and
G(x) = $x^{2}$ + 5
What is ?
(FG)(x) = F(x)G(x) so we multiply the two function to get the answer. We use $x^{m}$$x^{n}$ = $x^{m+n}$
(FG)(x) = F(x)G(x) so we multiply the two function to get the answer. We use $x^{m}$$x^{n}$ = $x^{m+n}$
Compare your answer with the correct one above
Multiply:

Multiply:

](https://vt-vtwa-assets.varsitytutors.com/vt-vtwa/uploads/formula_image/image/210807/gif.latex)
This product fits the sum of cubes pattern, where
:

So
](https://vt-vtwa-assets.varsitytutors.com/vt-vtwa/uploads/formula_image/image/210810/gif.latex)

This product fits the sum of cubes pattern, where :
So
Compare your answer with the correct one above
F(x) = $x^{3}$ + $x^{2}$ - x + 2
and
G(x) = $x^{2}$ + 5
What is
?
F(x) = $x^{3}$ + $x^{2}$ - x + 2
and
G(x) = $x^{2}$ + 5
What is ?
(FG)(x) = F(x)G(x) so we multiply the two function to get the answer. We use $x^{m}$$x^{n}$ = $x^{m+n}$
(FG)(x) = F(x)G(x) so we multiply the two function to get the answer. We use $x^{m}$$x^{n}$ = $x^{m+n}$
Compare your answer with the correct one above
Multiply:

Multiply:

](https://vt-vtwa-assets.varsitytutors.com/vt-vtwa/uploads/formula_image/image/210807/gif.latex)
This product fits the sum of cubes pattern, where
:

So
](https://vt-vtwa-assets.varsitytutors.com/vt-vtwa/uploads/formula_image/image/210810/gif.latex)

This product fits the sum of cubes pattern, where :
So
Compare your answer with the correct one above
F(x) = $x^{3}$ + $x^{2}$ - x + 2
and
G(x) = $x^{2}$ + 5
What is
?
F(x) = $x^{3}$ + $x^{2}$ - x + 2
and
G(x) = $x^{2}$ + 5
What is ?
(FG)(x) = F(x)G(x) so we multiply the two function to get the answer. We use $x^{m}$$x^{n}$ = $x^{m+n}$
(FG)(x) = F(x)G(x) so we multiply the two function to get the answer. We use $x^{m}$$x^{n}$ = $x^{m+n}$
Compare your answer with the correct one above
Multiply:

Multiply:

](https://vt-vtwa-assets.varsitytutors.com/vt-vtwa/uploads/formula_image/image/210807/gif.latex)
This product fits the sum of cubes pattern, where
:

So
](https://vt-vtwa-assets.varsitytutors.com/vt-vtwa/uploads/formula_image/image/210810/gif.latex)

This product fits the sum of cubes pattern, where :
So
Compare your answer with the correct one above
F(x) = $x^{3}$ + $x^{2}$ - x + 2
and
G(x) = $x^{2}$ + 5
What is
?
F(x) = $x^{3}$ + $x^{2}$ - x + 2
and
G(x) = $x^{2}$ + 5
What is ?
(FG)(x) = F(x)G(x) so we multiply the two function to get the answer. We use $x^{m}$$x^{n}$ = $x^{m+n}$
(FG)(x) = F(x)G(x) so we multiply the two function to get the answer. We use $x^{m}$$x^{n}$ = $x^{m+n}$
Compare your answer with the correct one above
Multiply:

Multiply:

](https://vt-vtwa-assets.varsitytutors.com/vt-vtwa/uploads/formula_image/image/210807/gif.latex)
This product fits the sum of cubes pattern, where
:

So
](https://vt-vtwa-assets.varsitytutors.com/vt-vtwa/uploads/formula_image/image/210810/gif.latex)

This product fits the sum of cubes pattern, where :
So
Compare your answer with the correct one above
F(x) = $x^{3}$ + $x^{2}$ - x + 2
and
G(x) = $x^{2}$ + 5
What is
?
F(x) = $x^{3}$ + $x^{2}$ - x + 2
and
G(x) = $x^{2}$ + 5
What is ?
(FG)(x) = F(x)G(x) so we multiply the two function to get the answer. We use $x^{m}$$x^{n}$ = $x^{m+n}$
(FG)(x) = F(x)G(x) so we multiply the two function to get the answer. We use $x^{m}$$x^{n}$ = $x^{m+n}$
Compare your answer with the correct one above
Multiply:

Multiply:

](https://vt-vtwa-assets.varsitytutors.com/vt-vtwa/uploads/formula_image/image/210807/gif.latex)
This product fits the sum of cubes pattern, where
:

So
](https://vt-vtwa-assets.varsitytutors.com/vt-vtwa/uploads/formula_image/image/210810/gif.latex)

This product fits the sum of cubes pattern, where :
So
Compare your answer with the correct one above