How to find out if lines are perpendicular - PSAT Math

Card 1 of 56

0
Didn't Know
Knew It
0
1 of 2019 left
Question

Which set of lines is perpendicular?

Tap to reveal answer

Answer

Two lines are perpendicular to each other if their slopes are negative reciprocals. For example, if one line has a slope of 2, the line perpendicular to it has a slope of –1/2. One easy way to eliminate answer choices is to check if the slopes have the same sign, i.e. both positive or both negative. If so, they cannot be perpendicular. Several of the lines in the answer choices are of the form y = mx + b, where m is the slope and b is the y-intercept. We are only worried about the slope for the purposes of this question.

y = 3_x_ + 5 and y = 5_x_ + 3 both have positive slopes (m = 3 and m = 5, respectively), so they aren't perpendicular.

y = 3_x_/5 – 3 and y = 5_x_/3 + 3 both have positive slopes, so again they aren't perpendicular.

y = x – 1/2 and y = –x + 1/2 have slopes of m = 1 and m = –1, respectively. One is positive and one is negative, so that is a good sign. Let's take the negative reciprocal of 1. 1 /–1 = –1. So these two slopes are in fact negative reciprocals, and these two lines are perpendicular to each other. Even though we have found the correct answer, let's go through the other two choices to be sure.

The line between the points (1,3) and (3,5), and y = 4_x_ + 7: We need to find the slope of the first line. slope = rise / run = (_y_2 – _y_1) / (_x_2 – x_1) = (5 – 3) / (3 – 1) = 1. The slope of y = 4_x + 7 is also positive (m = 4), so the lines are not perpendicular.

The line between the points (7,4) and (4,7), and the line between the points (3,9) and (4,8): the first slope = (7 – 4) / (4 – 7) = –1 and the second slope = (8 – 9) / (4 – 3) = –1. They have the same slope, making them parallel, not perpendicular.

← Didn't Know|Knew It →