Graphs of Polynomial Functions
Help Questions
Pre-Calculus › Graphs of Polynomial Functions
Give the -intercept of the graph of the function
Round to the nearest tenth, if applicable.
The graph has no -interceptx
Explanation
The -intercept is
, where
:
The -intercept is
.
Write the equation for the polynomial in the graph:

Explanation
The zeros of the polynomial are . That means that the factors equal zero when these values are plugged in.
The first factor is or equivalently
multiply both sides by 5:
The second and third factors are and
Multiply:
Because the graph goes down-up-down instead of the standard up-down-up, the graph is negative, so change all of the signs:
Give the -intercept of the graph of the function
Round to the nearest tenth, if applicable.
The graph has no -interceptx
Explanation
The -intercept is
, where
:
The -intercept is
.
Write the equation for the polynomial in the graph:

Explanation
The zeros of the polynomial are . That means that the factors equal zero when these values are plugged in.
The first factor is or equivalently
multiply both sides by 5:
The second and third factors are and
Multiply:
Because the graph goes down-up-down instead of the standard up-down-up, the graph is negative, so change all of the signs:
Graph the function and identify the roots.





Explanation
This question tests one's ability to graph a polynomial function.
For the purpose of Common Core Standards, "graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior" falls within the Cluster C of "Analyze Functions Using Different Representations" concept (CCSS.MATH.CONTENT.HSF-IF.C.7).
Knowing the standard and the concept for which it relates to, we can now do the step-by-step process to solve the problem in question.
Step 1: Use algebraic technique to factor the function.
Recognize that the binomial is a perfect square for which the following formula can be used
since
thus the simplified, factored form is,
.
Step 2: Identify the roots of the function.
To find the roots of a function set its factored form equal to zero and solve for the possible x values.
Step 3: Create a table of pairs.
The values in the table are found by substituting in the x values into the function as follows.
Step 4: Plot the points on a coordinate grid and connect them with a smooth curve.

Graph the function and identify the roots.





Explanation
This question tests one's ability to graph a polynomial function.
For the purpose of Common Core Standards, "graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior" falls within the Cluster C of "Analyze Functions Using Different Representations" concept (CCSS.MATH.CONTENT.HSF-IF.C.7).
Knowing the standard and the concept for which it relates to, we can now do the step-by-step process to solve the problem in question.
Step 1: Use algebraic technique to factor the function.
Recognize that the binomial is a perfect square for which the following formula can be used
since
thus the simplified, factored form is,
.
Step 2: Identify the roots of the function.
To find the roots of a function set its factored form equal to zero and solve for the possible x values.
Step 3: Create a table of pairs.
The values in the table are found by substituting in the x values into the function as follows.
Step 4: Plot the points on a coordinate grid and connect them with a smooth curve.

Graph the function and identify its roots.





Explanation
This question tests one's ability to graph a polynomial function.
For the purpose of Common Core Standards, "graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior" falls within the Cluster C of "Analyze Functions Using Different Representations" concept (CCSS.MATH.CONTENT.HSF-IF.C.7).
Knowing the standard and the concept for which it relates to, we can now do the step-by-step process to solve the problem in question.
Step 1: Use algebraic technique to factor the function.
Recognize that the binomial is a perfect square for which the following formula can be used
since
thus the simplified, factored form is,
.
Step 2: Identify the roots of the function.
To find the roots of a function set its factored form equal to zero and solve for the possible x values.
Step 3: Create a table of pairs.
The values in the table are found by substituting in the x values into the function as follows.
Step 4: Plot the points on a coordinate grid and connect them with a smooth curve.

Graph the function and identify its roots.





Explanation
This question tests one's ability to graph a polynomial function.
For the purpose of Common Core Standards, "graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior" falls within the Cluster C of "Analyze Functions Using Different Representations" concept (CCSS.MATH.CONTENT.HSF-IF.C.7).
Knowing the standard and the concept for which it relates to, we can now do the step-by-step process to solve the problem in question.
Step 1: Use algebraic technique to factor the function.
Recognize that the binomial is a perfect square for which the following formula can be used
since
thus the simplified, factored form is,
.
Step 2: Identify the roots of the function.
To find the roots of a function set its factored form equal to zero and solve for the possible x values.
Step 3: Create a table of pairs.
The values in the table are found by substituting in the x values into the function as follows.
Step 4: Plot the points on a coordinate grid and connect them with a smooth curve.

Graph the function and identify its roots.





Explanation
This question tests one's ability to graph a polynomial function.
For the purpose of Common Core Standards, "graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior" falls within the Cluster C of "Analyze Functions Using Different Representations" concept (CCSS.MATH.CONTENT.HSF-IF.C.7).
Knowing the standard and the concept for which it relates to, we can now do the step-by-step process to solve the problem in question.
Step 1: Use algebraic technique to factor the function.
Recognize that the binomial is a perfect square for which the following formula can be used
since
thus the simplified, factored form is,
.
Step 2: Identify the roots of the function.
To find the roots of a function set its factored form equal to zero and solve for the possible x values.
Step 3: Create a table of pairs.
The values in the table are found by substituting in the x values into the function as follows.
Step 4: Plot the points on a coordinate grid and connect them with a smooth curve.

Graph the function and identify its roots.





Explanation
This question tests one's ability to graph a polynomial function.
For the purpose of Common Core Standards, "graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior" falls within the Cluster C of "Analyze Functions Using Different Representations" concept (CCSS.MATH.CONTENT.HSF-IF.C.7).
Knowing the standard and the concept for which it relates to, we can now do the step-by-step process to solve the problem in question.
Step 1: Use algebraic technique to factor the function.
Recognize that the binomial is a perfect square for which the following formula can be used
since
thus the simplified, factored form is,
.
Step 2: Identify the roots of the function.
To find the roots of a function set its factored form equal to zero and solve for the possible x values.
Step 3: Create a table of pairs.
The values in the table are found by substituting in the x values into the function as follows.
Step 4: Plot the points on a coordinate grid and connect them with a smooth curve.
