Using PCC

Help Questions

Organic Chemistry › Using PCC

Questions 1 - 10
1

Which of the following compounds is not a reducing agent?

Explanation

is the only compound listed that is not a reducing agent. Pyridinium chlorochromate is a weak oxidizing agent and is often used to oxidize alcohols into carbony compounds. All of the other compounds are similar in that they function as reducing agents.

2

What is the product of the reaction shown?

Image6

Explanation

PCC can be used to oxidize primary alcohols into aldehydes, or secondary alcohols into ketones. The starting material shown is a secondary alcohol, so the product will be a ketone (a carbonyl () group where the carbonyl carbon is also attached to two other carbons).

3

What is the product of 1-pentanol when it is treated with PCC?

Pentanal

1-pentanone

2-pentanol

No reaction occurs

None of these

Explanation

PCC is an oxidizing agent. It converts alcohols to carbonyls, but is not strong enough to convert a primary alcohol into a carboxylic acid. It only converts primary alcohols to aldehydes, and secondary alcohols to ketones. 1-pentanol is a primary alcohol so it will be converted to the aldehyde pentanal.

4

Screen shot 2015 07 02 at 8.08.51 pm

Which reagent is best-suited to accomplish the given reaction?

PCC

Explanation

PCC is an oxidizing agent that reacts with primary and secondary alcohols. However, it is less reactive than potassium permanganate and chromic acid. PCC differs from chromic acid by oxidizing primary alcohols to aldehydes, whereas chromic acid oxidizes primary alcohols and aldehydes to carboxylic acids. The desired product of the reaction given requires that the primary alcohol be oxidized to an aldehyde, so PCC is the best option. is a reducing agent and would have the opposite effect than what is desired, yielding an alkane.

5

Screen shot 2015 12 31 at 10.30.13 am

What would be the product of the given reaction?

Screen shot 2015 12 31 at 10.27.06 am

Screen shot 2015 12 31 at 10.27.26 am

Screen shot 2015 12 31 at 10.27.21 am

Screen shot 2015 12 31 at 10.27.13 am

Explanation

The reaction given would give an aldehyde. This type of reaction is called an oxidation reaction. Oxidation of a primary alcohol as in the reaction given by PCC (pyridinium chlorochromate) in (dichloromethane) solvent yields an aldehyde. Like chromic acid, PCC oxidizes alcohols. However, PCC only oxidizes primary alcohols one step up to aldehydes and secondary alcohols to ketones. Chromic acid is a harsher oxidant because it will oxidize aldehydes to carboxylic acids. Below is the mechanism for this reaction: Below is the mechanism:

Screen shot 2015 12 31 at 12.35.23 pm

6

Which of the following is not true regarding the reagent ?

can oxidize aldehydes into carboxylic acids

can oxidize primary alcohols into aldehydes

can oxidize secondary alcohols into ketones

None of these

Explanation

has the capability of oxidizing primary alcohols into aldehydes and secondary alcohols into ketones. However, it cannot oxidize aldehydes into carboxylic acids. To do that, we would need a stronger oxidizing agent such as .

7

What is the product when 2-butanol is treated with PCC?

2-butanone

2-butanol

1-butanone

1-butanol

None of these

Explanation

PCC is an oxidizing agent. It converts alcohols to ketones, but is not strong enough to convert primary alcohols to carboxylic acids. 2-butanol has a hydroxy group on its carbon 2. The addition of PCC will convert this hydroxy group into a carbonyl, producing 2-butanone.

8

What is the product of the reaction shown?

Screen shot 2015 11 13 at 3.21.06 pm

Screen shot 2015 11 13 at 3.21.14 pm

III

I

II

IV

V

Explanation

First step: PCC oxidizes the primary alcohol to acetaldehyde

Second step: Grignard reagent attacks carbonyl carbon

Third step: Neutralization of the anion forms isoproyl alcohol

9

Screen shot 2015 12 29 at 6.51.20 am

What would be the product of the given reaction?

Screen shot 2015 12 29 at 6.44.15 am

Screen shot 2015 12 29 at 6.56.32 am

Screen shot 2015 12 29 at 6.56.28 am

Screen shot 2015 12 29 at 6.56.22 am

Explanation

The reaction given would give an aldehyde. This type of reaction is called an oxidation reaction. Oxidation of a primary alcohol as in the reaction given by PCC (pyridinium chlorochromate) in (dichloromethane) solvent yields an aldehyde. Like chromic acid, PCC oxidizes alcohols. However, PCC only oxidizes primary alcohols one step up to aldehydes and secondary alcohols to ketones. Chromic acid is a harsher oxidant because it will oxidize aldehydes to carboxylic acids. Below is the mechanism for this reaction:

Screen shot 2015 12 31 at 12.49.15 pm

10

Img 0634

Which reagents are required to drive the given reaction?

Explanation

This is a two step reaction. In the first step, an alcohol is substituted for the bromine via an reaction. Next, the alcohol is oxidized into a ketone with , a strong oxidizing agent used almost exclusively for converting alcohols into carbonyls.

Return to subject