Thermodynamics of Phase Changes - MCAT Chemical and Physical Foundations of Biological Systems

Card 1 of 98

0
Didn't Know
Knew It
0
1 of 2019 left
Question

A scientist prepares an experiment to demonstrate the second law of thermodynamics for a chemistry class. In order to conduct the experiment, the scientist brings the class outside in January and gathers a cup of water and a portable stove.

The temperature outside is –10 degrees Celsius. The scientist asks the students to consider the following when answering his questions:

Gibbs Free Energy Formula:

ΔG = ΔH – TΔS

Liquid-Solid Water Phase Change Reaction:

H2O(l) ⇌ H2O(s) + X

The scientist prepares two scenarios.

Scenario 1:

The scientist buries the cup of water outside in the snow, returns to the classroom with his class for one hour, and the class then checks on the cup. They find that the water has frozen in the cup.

Scenario 2:

The scientist then places the frozen cup of water on the stove and starts the gas. The class finds that the water melts quickly.

After the water melts, the scientist asks the students to consider two hypothetical scenarios as a thought experiment.

Scenario 3:

Once the liquid water at the end of scenario 2 melts completely, the scientist turns off the gas and monitors what happens to the water. Despite being in the cold air, the water never freezes.

Scenario 4:

The scientist takes the frozen water from the end of scenario 1, puts it on the active stove, and the water remains frozen.

When the scientist moves the frozen water to the stove, the water melts. If the temperature of the stove is kept such that the reaction is at equilibrium, and the water is almost entirely melted, which of the following is a possible Keq value for the Liquid-Solid Water Phase Change Reaction as it is written?

Tap to reveal answer

Answer

Once the water is almost entirely melted, the reaction is heavily skewed to the left side of the reaction. Notice the reaction is written with liquid water on the left. The equilibrium constant equation is written with the product (right-side) concentrations over the reactant concentrations; therefore, if there is a relative abundance of the reactants to products, K will be less than 1, but not all the way down to zero.

← Didn't Know|Knew It →