Buoyancy and Displacement - MCAT Chemical and Physical Foundations of Biological Systems

Card 1 of 49

0
Didn't Know
Knew It
0
1 of 2019 left
Question

Use the following information to answer questions 1-6:

The circulatory system of humans is a closed system consisting of a pump that moves blood throughout the body through arteries, capillaries, and veins. The capillaries are small and thin, allowing blood to easily perfuse the organ systems. Being a closed system, we can model the human circulatory system like an electrical circuit, making modifications for the use of a fluid rather than electrons. The heart acts as the primary force for movement of the fluid, the fluid moves through arteries and veins, and resistance to blood flow occurs depending on perfusion rates.

To model the behavior of fluids in the circulatory system, we can modify Ohm’s law of V = IR to ∆P = FR where ∆P is the change in pressure (mmHg), F is the rate of flow (ml/min), and R is resistance to flow (mm Hg/ml/min). Resistance to fluid flow in a tube is described by Poiseuille’s law: R = 8hl/πr4 where l is the length of the tube, h is the viscosity of the fluid, and r is the radius of the tube. Viscosity of blood is higher than water due to the presence of blood cells such as erythrocytes, leukocytes, and thrombocytes.

The above equations hold true for smooth, laminar flow. Deviations occur, however, when turbulent flow is present. Turbulent flow can be described as nonlinear or tumultuous, with whirling, glugging or otherwise unpredictable flow rates. Turbulence can occur when the anatomy of the tube deviates, for example during sharp bends or compressions. We can also get turbulent flow when the velocity exceeds critical velocity vc, defined below.

vc = NRh/ρD

NR is Reynold’s constant, h is the viscosity of the fluid, ρ is the density of the fluid, and D is the diameter of the tube. The density of blood is measured to be 1060 kg/m3.

Another key feature of the circulatory system is that it is set up such that the organ systems act in parallel rather than in series. This allows the body to modify how much blood is flowing to each organ system, which would not be possible under a serial construction. This setup is represented in Figure 1.

Circulatory_system_circuit

A red blood cell floating in the body weighs 27 picograms and has a volume of 40.0 * 10-12cm3. What is the buoyant force on the red blood cell?

Tap to reveal answer

Answer

To answer this question, we use Fb = Vgρ, where V is volume, g is gravity, and ρ is the density of the fluid.

In this case we can use the density of blood, since it is given in the passage as 1060kg/m3. Since the density is in cubic meters, we have to make sure that the volume is also converted to cubic meters.

(4.0 * 10-11)x (1 * 10-6m/ 1cm) = 4 * 10-17m3

Fb = (4.0 x 10-17m3) (10 m/s2) (1.06 x 103kg/m3) = 4 * 10-13N

← Didn't Know|Knew It →