Radius

Help Questions

ISEE Upper Level Quantitative Reasoning › Radius

Questions 1 - 10
1

The circumferences of eight circles form an arithmetic sequence. The smallest circle has radius two inches; the second smallest circle has radius five inches. Give the radius of the largest circle.

1 foot, 11 inches

2 feet

2 feet, 1 inch

4 feet 2 inches

3 feet 10 inches

Explanation

The circumference of a circle can be determined by multiplying its radius by , so the circumferences of the two smallest circles are

and

The circumferences form an arithmetic sequence with common difference

The circumference of a circle can therefore be found using the formula

where and ; we are looking for that of the th smallest circle, so

Since the radius of a circle is the circumference of the circle divided by , the radius of this eighth circle is

inches, or 1 foot 11 inches.

2

The circumferences of eight circles form an arithmetic sequence. The smallest circle has radius two inches; the second smallest circle has radius five inches. Give the radius of the largest circle.

1 foot, 11 inches

2 feet

2 feet, 1 inch

4 feet 2 inches

3 feet 10 inches

Explanation

The circumference of a circle can be determined by multiplying its radius by , so the circumferences of the two smallest circles are

and

The circumferences form an arithmetic sequence with common difference

The circumference of a circle can therefore be found using the formula

where and ; we are looking for that of the th smallest circle, so

Since the radius of a circle is the circumference of the circle divided by , the radius of this eighth circle is

inches, or 1 foot 11 inches.

3

Find the circumference of a circle with a radius of 4cm.

Explanation

To find the circumference of a circle, we will use the following formula:

where r is the radius of the circle.

Now, we know the radius of the circle is 4cm.

Knowing this, we can substitute into the formula. We get

4

Find the circumference of a circle with a radius of 4cm.

Explanation

To find the circumference of a circle, we will use the following formula:

where r is the radius of the circle.

Now, we know the radius of the circle is 4cm.

Knowing this, we can substitute into the formula. We get

5

Track

The track at Truman High School is shown above; it is comprised of a square and a semicircle.

Veronica begins at Point A, runs three times around the track counterclockwise, and continues until she reaches Point B. Which of the following comes closest to the distance Veronica runs?

Explanation

First, it is necessary to know the length of the semicircle connecting Points B and D, which has diameter 500 feet; this length is about

feet.

The distance around the track is about

feet.

Veronica runs around the track three complete times, for a distance of about

feet.

She then runs from Point A to Point E, which is another 500 feet; Point E to Point D, which is yet another 500 feet, and, finally Point D to Point B, for a final 785 feet. The total distance Veronica runs is about

feet.

Divide by 5,280 to convert to miles:

The closest answer is miles.

6

Find the area of a circle with a radius of 6in.

Explanation

To find the area of a circle, we will use the following formula:

Now, we know the radius of the circle is 6in.

Knowing this, we can substitute into the formula. We get

7

Track

The track at Monroe High School is a perfect circle of radius 600 feet, and is shown in the above figure. Quinnella wants to run around the track for one and a half miles. If Quinnella starts at point C and runs counterclockwise, which of the following is closest to the point at which she will stop running?

(Assume the five points are evenly spaced)

Between Points B and C

Between Points C and D

Between Points D and E

Between Points E and A

Between Points A and B

Explanation

A circle of radius 600 feet will have a circumference of

feet.

Quinnella will run one and a half miles, or

feet,

which is about times the circumference of the circle.

Quinnella will run around the track twice, returning to Point C; she will not quite make it to Point B a third time, since that is one-fifth of the track, or 0.2. The correct response is that she will be between Points B and C.

8

Track

The track at Simon Bolivar High School is a perfect circle of radius 500 feet, and is shown in the above figure. Manuel starts at point C, runs around the track counterclockwise three times, and continues to run clockwise until he makes it to point D. Which of the following comes closest to the number of miles Manuel has run?

Explanation

The circumference of a circle with radius 500 feet is

feet.

Manuel runs this distance three times, then he runs from Point C to D, which is about four-fifths of this distance. Therefore, Manuel's run will be about

feet.

Divide by 5,280 to convert to miles:

,

making miles the response closest to the actual running distance.

9

Track

The track at Monroe High School is a perfect circle of radius 600 feet, and is shown in the above figure. Quinnella wants to run around the track for one and a half miles. If Quinnella starts at point C and runs counterclockwise, which of the following is closest to the point at which she will stop running?

(Assume the five points are evenly spaced)

Between Points B and C

Between Points C and D

Between Points D and E

Between Points E and A

Between Points A and B

Explanation

A circle of radius 600 feet will have a circumference of

feet.

Quinnella will run one and a half miles, or

feet,

which is about times the circumference of the circle.

Quinnella will run around the track twice, returning to Point C; she will not quite make it to Point B a third time, since that is one-fifth of the track, or 0.2. The correct response is that she will be between Points B and C.

10

Track

The track at James Buchanan High School is shown above; it is comprised of a square and a semicircle.

Diane wants to run two miles. If she begins at Point A and begins running counterclockwise, when she is finished, which of the five points will she be closest to?

Explanation

First, it is necessary to know the length of the semicircle connecting Points B and D, which has diameter 400 feet; this length is

feet.

The distance around the track is about

feet.

Diane wants to run two miles, or

feet.

She will make about

circuits around the track.

Equivalently, she will run the track 5 complete times for a total of about

feet,

so she will have

feet to go.

She is running counterclockwise, so she will proceed from Point A to Point D, running another 800 feet, leaving

feet.

She will almost, but not quite, finish the 628 feet from Point D to Point B.

The correct response is Point B.

Page 1 of 15
Return to subject