Avoiding Common Data Sufficiency Traps - GMAT Quantitative

Card 1 of 80

0
Didn't Know
Knew It
0
1 of 2019 left
Question

What is the value of

Tap to reveal answer

Answer

This exponent-based problem involves an important lesson in Data Sufficiency strategy: if the problem asks for the value formed by a combination of variables (such as here), there is usually a way to solve specifically for that combination without having to solve for the variables individually!

Here you can do that given statement 1. If you employ the first guiding principle of exponents, "find common bases," you can factor the 3, 9, and 27 all into base 3s so that all your bases are common. That means that:

Which then means that you can employ the rule for taking one exponent to another (in other words, ) and rephrase this as:

Then you can combine the terms on the left using the rule that when you multiply two exponents with the same base, you add the exponents. Therefore:

And here you can set the exponents equal using another law of exponents, meaning that , and making Statement 1 sufficient.

Statement 2 is not sufficient, as merely knowing that alone does not allow you to find a specific value for . Therefore the correct answer is "Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient to answer the question asked".

← Didn't Know|Knew It →