Growth of Linear and Exponential Functions: CCSS.Math.Content.HSF-LE.A.1a - Common Core: High School - Functions
Card 0 of 48
Determine whether the situations below are described as linear or exponential functions.
Tina's allowance increases  every month.
 every month.
Johnny is  years older than Jane.
 years older than Jane.
Determine whether the situations below are described as linear or exponential functions.
Tina's allowance increases  every month.
Johnny is  years older than Jane.
This question is testing one's ability to identify and prove whether situations and their functions are linear or exponential. The key concept in questions like these, is understanding and recognizing that linear functions grow by equal differences over intervals, where as exponential functions grow by equal factors over intervals.
For the purpose of Common Core Standards, proving that linear functions grow by difference and exponential functions grow by factors, falls within the Cluster A of construct and compare linear, quadratic, and exponential model and solve problems concept (CCSS.Math.content.HSF.LE.A).
Knowing the standard and the concept for which it relates to, we can now do the step-by-step process to solve the problem in question.
Step 1: Examine the first statement.
I. Identify if it is increase/decreasing by a constant or by a percentage that is dependent on another value in the statement.
Statement one: Tina's allowance increases  every month. In this particular case the amount of increase depends on the monthly allowance. In other words as the monthly allowance increases the
 every month. In this particular case the amount of increase depends on the monthly allowance. In other words as the monthly allowance increases the  increase becomes a greater dollar amount as time increases. Therefore, the increase is by a percentage.
 increase becomes a greater dollar amount as time increases. Therefore, the increase is by a percentage.
II. Conclude whether the statement is linear or exponential.
Since the increase is by a percentage, statement one is an exponential function.
Step 2: Examine the second statement.
I. Identify if it is increase/decreasing by a constant or by a percentage that is dependent on another value in the statement.
Statement two: Johnny is  years older than Jane. In this particular case Johnny's age can be written as a function of Jane's age. Since Johnny is
 years older than Jane. In this particular case Johnny's age can be written as a function of Jane's age. Since Johnny is  years older than Jane this is a constant difference. In other words, as the years go on, Johnny's age increase but so does Jane's therefore, Johnny remains
 years older than Jane this is a constant difference. In other words, as the years go on, Johnny's age increase but so does Jane's therefore, Johnny remains  years older than Jane across all time intervals.
 years older than Jane across all time intervals.
II. Conclude whether the statement is linear or exponential.
Since the increase is by a constant, statement two is a linear function.
Step 3: Answer the question.
Tina's allowance increases  every month is an exponential function.
 every month is an exponential function.
Johnny is  years older than Jane is a linear function.
 years older than Jane is a linear function.
Recall that for a statement to be linear it must show growth of a constant difference. This means that the output has the same difference for each one increase to the input value. For a statement to be exponential, it must show growth by a common factor.
This question is testing one's ability to identify and prove whether situations and their functions are linear or exponential. The key concept in questions like these, is understanding and recognizing that linear functions grow by equal differences over intervals, where as exponential functions grow by equal factors over intervals.
For the purpose of Common Core Standards, proving that linear functions grow by difference and exponential functions grow by factors, falls within the Cluster A of construct and compare linear, quadratic, and exponential model and solve problems concept (CCSS.Math.content.HSF.LE.A).
Knowing the standard and the concept for which it relates to, we can now do the step-by-step process to solve the problem in question.
Step 1: Examine the first statement.
I. Identify if it is increase/decreasing by a constant or by a percentage that is dependent on another value in the statement.
Statement one: Tina's allowance increases  every month. In this particular case the amount of increase depends on the monthly allowance. In other words as the monthly allowance increases the 
 increase becomes a greater dollar amount as time increases. Therefore, the increase is by a percentage.
II. Conclude whether the statement is linear or exponential.
Since the increase is by a percentage, statement one is an exponential function.
Step 2: Examine the second statement.
I. Identify if it is increase/decreasing by a constant or by a percentage that is dependent on another value in the statement.
Statement two: Johnny is  years older than Jane. In this particular case Johnny's age can be written as a function of Jane's age. Since Johnny is 
 years older than Jane this is a constant difference. In other words, as the years go on, Johnny's age increase but so does Jane's therefore, Johnny remains 
 years older than Jane across all time intervals.
II. Conclude whether the statement is linear or exponential.
Since the increase is by a constant, statement two is a linear function.
Step 3: Answer the question.
Tina's allowance increases  every month is an exponential function.
Johnny is  years older than Jane is a linear function.
Recall that for a statement to be linear it must show growth of a constant difference. This means that the output has the same difference for each one increase to the input value. For a statement to be exponential, it must show growth by a common factor.
Compare your answer with the correct one above
Determine whether the situation describes a linear or exponential function.
Tina's allowance increases by  every month.
 every month.
Determine whether the situation describes a linear or exponential function.
Tina's allowance increases by  every month.
This question is testing one's ability to identify and prove whether situations and their functions are linear or exponential. The key concept in questions like these, is understanding and recognizing that linear functions grow by equal differences over intervals, where as exponential functions grow by equal factors over intervals.
For the purpose of Common Core Standards, proving that linear functions grow by difference and exponential functions grow by factors, falls within the Cluster A of construct and compare linear, quadratic, and exponential model and solve problems concept (CCSS.Math.content.HSF.LE.A).
Knowing the standard and the concept for which it relates to, we can now do the step-by-step process to solve the problem in question.
Step 1: Examine the statement.
I. Identify if it is increase/decreasing by a constant or by a percentage that is dependent on another value in the statement.
Statement: Tina's allowance increases by  every month. In this particular case the amount of increases by a constant of two dollars every month.
 every month. In this particular case the amount of increases by a constant of two dollars every month.
II. Conclude whether the statement is linear or exponential.
Since the increase is by a constant, the statement is a linear function.
Step 3: Answer the question.
Tina's allowance increases by  every month is a linear function.
 every month is a linear function.
Recall that for a statement to be linear it must show growth of a constant difference. This means that the output has the same difference for each one increase to the input value. For a statement to be exponential, it must show growth by a common factor.
This question is testing one's ability to identify and prove whether situations and their functions are linear or exponential. The key concept in questions like these, is understanding and recognizing that linear functions grow by equal differences over intervals, where as exponential functions grow by equal factors over intervals.
For the purpose of Common Core Standards, proving that linear functions grow by difference and exponential functions grow by factors, falls within the Cluster A of construct and compare linear, quadratic, and exponential model and solve problems concept (CCSS.Math.content.HSF.LE.A).
Knowing the standard and the concept for which it relates to, we can now do the step-by-step process to solve the problem in question.
Step 1: Examine the statement.
I. Identify if it is increase/decreasing by a constant or by a percentage that is dependent on another value in the statement.
Statement: Tina's allowance increases by  every month. In this particular case the amount of increases by a constant of two dollars every month.
II. Conclude whether the statement is linear or exponential.
Since the increase is by a constant, the statement is a linear function.
Step 3: Answer the question.
Tina's allowance increases by  every month is a linear function.
Recall that for a statement to be linear it must show growth of a constant difference. This means that the output has the same difference for each one increase to the input value. For a statement to be exponential, it must show growth by a common factor.
Compare your answer with the correct one above
Determine whether the situation describes a linear or exponential function.
Tina's allowance increases  every month.
 every month.
Determine whether the situation describes a linear or exponential function.
Tina's allowance increases  every month.
This question is testing one's ability to identify and prove whether situations and their functions are linear or exponential. The key concept in questions like these, is understanding and recognizing that linear functions grow by equal differences over intervals, where as exponential functions grow by equal factors over intervals.
For the purpose of Common Core Standards, proving that linear functions grow by difference and exponential functions grow by factors, falls within the Cluster A of construct and compare linear, quadratic, and exponential model and solve problems concept (CCSS.Math.content.HSF.LE.A).
Knowing the standard and the concept for which it relates to, we can now do the step-by-step process to solve the problem in question.
Step 1: Examine the statement.
I. Identify if it is increase/decreasing by a constant or by a percentage that is dependent on another value in the statement.
Statement: Tina's allowance increases  every month. In this particular case the amount of increase depends on the monthly allowance. In other words as the monthly allowance increases the
 every month. In this particular case the amount of increase depends on the monthly allowance. In other words as the monthly allowance increases the  increase becomes a greater dollar amount as time increases. Therefore, the increase is by a percentage.
 increase becomes a greater dollar amount as time increases. Therefore, the increase is by a percentage.
II. Conclude whether the statement is linear or exponential.
Since the increase is by a percentage, statement one is an exponential function.
Step 3: Answer the question.
Tina's allowance increases  every month is an exponential function.
 every month is an exponential function.
Recall that for a statement to be linear it must show growth of a constant difference. This means that the output has the same difference for each one increase to the input value. For a statement to be exponential, it must show growth by a common factor.
This question is testing one's ability to identify and prove whether situations and their functions are linear or exponential. The key concept in questions like these, is understanding and recognizing that linear functions grow by equal differences over intervals, where as exponential functions grow by equal factors over intervals.
For the purpose of Common Core Standards, proving that linear functions grow by difference and exponential functions grow by factors, falls within the Cluster A of construct and compare linear, quadratic, and exponential model and solve problems concept (CCSS.Math.content.HSF.LE.A).
Knowing the standard and the concept for which it relates to, we can now do the step-by-step process to solve the problem in question.
Step 1: Examine the statement.
I. Identify if it is increase/decreasing by a constant or by a percentage that is dependent on another value in the statement.
Statement: Tina's allowance increases  every month. In this particular case the amount of increase depends on the monthly allowance. In other words as the monthly allowance increases the 
 increase becomes a greater dollar amount as time increases. Therefore, the increase is by a percentage.
II. Conclude whether the statement is linear or exponential.
Since the increase is by a percentage, statement one is an exponential function.
Step 3: Answer the question.
Tina's allowance increases  every month is an exponential function.
Recall that for a statement to be linear it must show growth of a constant difference. This means that the output has the same difference for each one increase to the input value. For a statement to be exponential, it must show growth by a common factor.
Compare your answer with the correct one above
Determine whether the situation describes a linear or exponential function.
Johnny is  years older than Jane.
 years older than Jane.
Determine whether the situation describes a linear or exponential function.
Johnny is  years older than Jane.
This question is testing one's ability to identify and prove whether situations and their functions are linear or exponential. The key concept in questions like these, is understanding and recognizing that linear functions grow by equal differences over intervals, where as exponential functions grow by equal factors over intervals.
For the purpose of Common Core Standards, proving that linear functions grow by difference and exponential functions grow by factors, falls within the Cluster A of construct and compare linear, quadratic, and exponential model and solve problems concept (CCSS.Math.content.HSF.LE.A).
Knowing the standard and the concept for which it relates to, we can now do the step-by-step process to solve the problem in question.
Step 1: Examine the statement.
I. Identify if it is increase/decreasing by a constant or by a percentage that is dependent on another value in the statement.
Statement: Johnny is  years older than Jane. In this particular case Johnny's age can be written as a function of Jane's age. Since Johnny is
 years older than Jane. In this particular case Johnny's age can be written as a function of Jane's age. Since Johnny is  years older than Jane this is a constant difference. In other words, as the years go on, Johnny's age increase but so does Jane's therefore, Johnny remains
 years older than Jane this is a constant difference. In other words, as the years go on, Johnny's age increase but so does Jane's therefore, Johnny remains  years older than Jane across all time intervals.
 years older than Jane across all time intervals.
II. Conclude whether the statement is linear or exponential.
Since the increase is by a constant, statement two is a linear function.
Step 3: Answer the question.
Johnny is  years older than Jane is a linear function.
 years older than Jane is a linear function.
Recall that for a statement to be linear it must show growth of a constant difference. This means that the output has the same difference for each one increase to the input value. For a statement to be exponential, it must show growth by a common factor.
This question is testing one's ability to identify and prove whether situations and their functions are linear or exponential. The key concept in questions like these, is understanding and recognizing that linear functions grow by equal differences over intervals, where as exponential functions grow by equal factors over intervals.
For the purpose of Common Core Standards, proving that linear functions grow by difference and exponential functions grow by factors, falls within the Cluster A of construct and compare linear, quadratic, and exponential model and solve problems concept (CCSS.Math.content.HSF.LE.A).
Knowing the standard and the concept for which it relates to, we can now do the step-by-step process to solve the problem in question.
Step 1: Examine the statement.
I. Identify if it is increase/decreasing by a constant or by a percentage that is dependent on another value in the statement.
Statement: Johnny is  years older than Jane. In this particular case Johnny's age can be written as a function of Jane's age. Since Johnny is 
 years older than Jane this is a constant difference. In other words, as the years go on, Johnny's age increase but so does Jane's therefore, Johnny remains 
 years older than Jane across all time intervals.
II. Conclude whether the statement is linear or exponential.
Since the increase is by a constant, statement two is a linear function.
Step 3: Answer the question.
Johnny is  years older than Jane is a linear function.
Recall that for a statement to be linear it must show growth of a constant difference. This means that the output has the same difference for each one increase to the input value. For a statement to be exponential, it must show growth by a common factor.
Compare your answer with the correct one above
Determine whether the situation describes a linear or exponential function.
Johnny is  years older than Jane.
 years older than Jane.
Determine whether the situation describes a linear or exponential function.
Johnny is  years older than Jane.
This question is testing one's ability to identify and prove whether situations and their functions are linear or exponential. The key concept in questions like these, is understanding and recognizing that linear functions grow by equal differences over intervals, where as exponential functions grow by equal factors over intervals.
For the purpose of Common Core Standards, proving that linear functions grow by difference and exponential functions grow by factors, falls within the Cluster A of construct and compare linear, quadratic, and exponential model and solve problems concept (CCSS.Math.content.HSF.LE.A).
Knowing the standard and the concept for which it relates to, we can now do the step-by-step process to solve the problem in question.
Step 1: Examine the statement.
I. Identify if it is increase/decreasing by a constant or by a percentage that is dependent on another value in the statement.
Statement: Johnny is  years older than Jane. In this particular case Johnny's age can be written as a function of Jane's age. Since Johnny is
 years older than Jane. In this particular case Johnny's age can be written as a function of Jane's age. Since Johnny is  years older than Jane this is a constant difference. In other words, as the years go on, Johnny's age increase but so does Jane's therefore, Johnny remains
 years older than Jane this is a constant difference. In other words, as the years go on, Johnny's age increase but so does Jane's therefore, Johnny remains  years older than Jane across all time intervals.
 years older than Jane across all time intervals.
II. Conclude whether the statement is linear or exponential.
Since the increase is by a constant, statement two is a linear function.
Step 3: Answer the question.
Johnny is  years older than Jane is a linear function.
 years older than Jane is a linear function.
Recall that for a statement to be linear it must show growth of a constant difference. This means that the output has the same difference for each one increase to the input value. For a statement to be exponential, it must show growth by a common factor.
This question is testing one's ability to identify and prove whether situations and their functions are linear or exponential. The key concept in questions like these, is understanding and recognizing that linear functions grow by equal differences over intervals, where as exponential functions grow by equal factors over intervals.
For the purpose of Common Core Standards, proving that linear functions grow by difference and exponential functions grow by factors, falls within the Cluster A of construct and compare linear, quadratic, and exponential model and solve problems concept (CCSS.Math.content.HSF.LE.A).
Knowing the standard and the concept for which it relates to, we can now do the step-by-step process to solve the problem in question.
Step 1: Examine the statement.
I. Identify if it is increase/decreasing by a constant or by a percentage that is dependent on another value in the statement.
Statement: Johnny is  years older than Jane. In this particular case Johnny's age can be written as a function of Jane's age. Since Johnny is 
 years older than Jane this is a constant difference. In other words, as the years go on, Johnny's age increase but so does Jane's therefore, Johnny remains 
 years older than Jane across all time intervals.
II. Conclude whether the statement is linear or exponential.
Since the increase is by a constant, statement two is a linear function.
Step 3: Answer the question.
Johnny is  years older than Jane is a linear function.
Recall that for a statement to be linear it must show growth of a constant difference. This means that the output has the same difference for each one increase to the input value. For a statement to be exponential, it must show growth by a common factor.
Compare your answer with the correct one above
Determine whether the situation describes a linear or exponential function.
Tina's allowance increases  every month.
 every month.
Determine whether the situation describes a linear or exponential function.
Tina's allowance increases  every month.
This question is testing one's ability to identify and prove whether situations and their functions are linear or exponential. The key concept in questions like these, is understanding and recognizing that linear functions grow by equal differences over intervals, where as exponential functions grow by equal factors over intervals.
For the purpose of Common Core Standards, proving that linear functions grow by difference and exponential functions grow by factors, falls within the Cluster A of construct and compare linear, quadratic, and exponential model and solve problems concept (CCSS.Math.content.HSF.LE.A).
Knowing the standard and the concept for which it relates to, we can now do the step-by-step process to solve the problem in question.
Step 1: Examine the statement.
I. Identify if it is increase/decreasing by a constant or by a percentage that is dependent on another value in the statement.
Statement: Tina's allowance increases  every month. In this particular case the amount of increase depends on the monthly allowance. In other words as the monthly allowance increases the
 every month. In this particular case the amount of increase depends on the monthly allowance. In other words as the monthly allowance increases the  increase becomes a greater dollar amount as time increases. Therefore, the increase is by a percentage.
 increase becomes a greater dollar amount as time increases. Therefore, the increase is by a percentage.
II. Conclude whether the statement is linear or exponential.
Since the increase is by a percentage, statement one is an exponential function.
Step 3: Answer the question.
Tina's allowance increases  every month is an exponential function.
 every month is an exponential function.
Recall that for a statement to be linear it must show growth of a constant difference. This means that the output has the same difference for each one increase to the input value. For a statement to be exponential, it must show growth by a common factor.
This question is testing one's ability to identify and prove whether situations and their functions are linear or exponential. The key concept in questions like these, is understanding and recognizing that linear functions grow by equal differences over intervals, where as exponential functions grow by equal factors over intervals.
For the purpose of Common Core Standards, proving that linear functions grow by difference and exponential functions grow by factors, falls within the Cluster A of construct and compare linear, quadratic, and exponential model and solve problems concept (CCSS.Math.content.HSF.LE.A).
Knowing the standard and the concept for which it relates to, we can now do the step-by-step process to solve the problem in question.
Step 1: Examine the statement.
I. Identify if it is increase/decreasing by a constant or by a percentage that is dependent on another value in the statement.
Statement: Tina's allowance increases  every month. In this particular case the amount of increase depends on the monthly allowance. In other words as the monthly allowance increases the 
 increase becomes a greater dollar amount as time increases. Therefore, the increase is by a percentage.
II. Conclude whether the statement is linear or exponential.
Since the increase is by a percentage, statement one is an exponential function.
Step 3: Answer the question.
Tina's allowance increases  every month is an exponential function.
Recall that for a statement to be linear it must show growth of a constant difference. This means that the output has the same difference for each one increase to the input value. For a statement to be exponential, it must show growth by a common factor.
Compare your answer with the correct one above
Determine whether the situation describes a linear or exponential function.
Tina's allowance increases  every month.
 every month.
Determine whether the situation describes a linear or exponential function.
Tina's allowance increases  every month.
This question is testing one's ability to identify and prove whether situations and their functions are linear or exponential. The key concept in questions like these, is understanding and recognizing that linear functions grow by equal differences over intervals, where as exponential functions grow by equal factors over intervals.
For the purpose of Common Core Standards, proving that linear functions grow by difference and exponential functions grow by factors, falls within the Cluster A of construct and compare linear, quadratic, and exponential model and solve problems concept (CCSS.Math.content.HSF.LE.A).
Knowing the standard and the concept for which it relates to, we can now do the step-by-step process to solve the problem in question.
Step 1: Examine the statement.
I. Identify if it is increase/decreasing by a constant or by a percentage that is dependent on another value in the statement.
Statement: Tina's allowance increases  every month. In this particular case the amount of increase depends on the monthly allowance. In other words as the monthly allowance increases the
 every month. In this particular case the amount of increase depends on the monthly allowance. In other words as the monthly allowance increases the  increase becomes a greater dollar amount as time increases. Therefore, the increase is by a percentage.
 increase becomes a greater dollar amount as time increases. Therefore, the increase is by a percentage.
II. Conclude whether the statement is linear or exponential.
Since the increase is by a percentage, statement one is an exponential function.
Step 3: Answer the question.
Tina's allowance increases  every month is an exponential function.
 every month is an exponential function.
Recall that for a statement to be linear it must show growth of a constant difference. This means that the output has the same difference for each one increase to the input value. For a statement to be exponential, it must show growth by a common factor.
This question is testing one's ability to identify and prove whether situations and their functions are linear or exponential. The key concept in questions like these, is understanding and recognizing that linear functions grow by equal differences over intervals, where as exponential functions grow by equal factors over intervals.
For the purpose of Common Core Standards, proving that linear functions grow by difference and exponential functions grow by factors, falls within the Cluster A of construct and compare linear, quadratic, and exponential model and solve problems concept (CCSS.Math.content.HSF.LE.A).
Knowing the standard and the concept for which it relates to, we can now do the step-by-step process to solve the problem in question.
Step 1: Examine the statement.
I. Identify if it is increase/decreasing by a constant or by a percentage that is dependent on another value in the statement.
Statement: Tina's allowance increases  every month. In this particular case the amount of increase depends on the monthly allowance. In other words as the monthly allowance increases the 
 increase becomes a greater dollar amount as time increases. Therefore, the increase is by a percentage.
II. Conclude whether the statement is linear or exponential.
Since the increase is by a percentage, statement one is an exponential function.
Step 3: Answer the question.
Tina's allowance increases  every month is an exponential function.
Recall that for a statement to be linear it must show growth of a constant difference. This means that the output has the same difference for each one increase to the input value. For a statement to be exponential, it must show growth by a common factor.
Compare your answer with the correct one above
Determine whether the situation describes a linear or exponential function.
Johnny is  years older than Jane.
 years older than Jane.
Determine whether the situation describes a linear or exponential function.
Johnny is  years older than Jane.
This question is testing one's ability to identify and prove whether situations and their functions are linear or exponential. The key concept in questions like these, is understanding and recognizing that linear functions grow by equal differences over intervals, where as exponential functions grow by equal factors over intervals.
For the purpose of Common Core Standards, proving that linear functions grow by difference and exponential functions grow by factors, falls within the Cluster A of construct and compare linear, quadratic, and exponential model and solve problems concept (CCSS.Math.content.HSF.LE.A).
Knowing the standard and the concept for which it relates to, we can now do the step-by-step process to solve the problem in question.
Step 1: Examine the statement.
I. Identify if it is increase/decreasing by a constant or by a percentage that is dependent on another value in the statement.
Statement: Johnny is  years older than Jane. In this particular case Johnny's age can be written as a function of Jane's age. Since Johnny is
 years older than Jane. In this particular case Johnny's age can be written as a function of Jane's age. Since Johnny is  years older than Jane this is a constant difference. In other words, as the years go on, Johnny's age increase but so does Jane's therefore, Johnny remains
 years older than Jane this is a constant difference. In other words, as the years go on, Johnny's age increase but so does Jane's therefore, Johnny remains  years older than Jane across all time intervals.
 years older than Jane across all time intervals.
II. Conclude whether the statement is linear or exponential.
Since the increase is by a constant, statement two is a linear function.
Step 3: Answer the question.
Johnny is  years older than Jane is a linear function.
 years older than Jane is a linear function.
Recall that for a statement to be linear it must show growth of a constant difference. This means that the output has the same difference for each one increase to the input value. For a statement to be exponential, it must show growth by a common factor.
This question is testing one's ability to identify and prove whether situations and their functions are linear or exponential. The key concept in questions like these, is understanding and recognizing that linear functions grow by equal differences over intervals, where as exponential functions grow by equal factors over intervals.
For the purpose of Common Core Standards, proving that linear functions grow by difference and exponential functions grow by factors, falls within the Cluster A of construct and compare linear, quadratic, and exponential model and solve problems concept (CCSS.Math.content.HSF.LE.A).
Knowing the standard and the concept for which it relates to, we can now do the step-by-step process to solve the problem in question.
Step 1: Examine the statement.
I. Identify if it is increase/decreasing by a constant or by a percentage that is dependent on another value in the statement.
Statement: Johnny is  years older than Jane. In this particular case Johnny's age can be written as a function of Jane's age. Since Johnny is 
 years older than Jane this is a constant difference. In other words, as the years go on, Johnny's age increase but so does Jane's therefore, Johnny remains 
 years older than Jane across all time intervals.
II. Conclude whether the statement is linear or exponential.
Since the increase is by a constant, statement two is a linear function.
Step 3: Answer the question.
Johnny is  years older than Jane is a linear function.
Recall that for a statement to be linear it must show growth of a constant difference. This means that the output has the same difference for each one increase to the input value. For a statement to be exponential, it must show growth by a common factor.
Compare your answer with the correct one above
Determine whether the situation describes a linear or exponential function.
Tina's allowance increases by  every month.
 every month.
Determine whether the situation describes a linear or exponential function.
Tina's allowance increases by  every month.
This question is testing one's ability to identify and prove whether situations and their functions are linear or exponential. The key concept in questions like these, is understanding and recognizing that linear functions grow by equal differences over intervals, where as exponential functions grow by equal factors over intervals.
For the purpose of Common Core Standards, proving that linear functions grow by difference and exponential functions grow by factors, falls within the Cluster A of construct and compare linear, quadratic, and exponential model and solve problems concept (CCSS.Math.content.HSF.LE.A).
Knowing the standard and the concept for which it relates to, we can now do the step-by-step process to solve the problem in question.
Step 1: Examine the statement.
I. Identify if it is increase/decreasing by a constant or by a percentage that is dependent on another value in the statement.
Statement: Tina's allowance increases by  every month. In this particular case the amount of increases by a constant of
 every month. In this particular case the amount of increases by a constant of  every month.
 every month.
II. Conclude whether the statement is linear or exponential.
Since the increase is by a constant, the statement is a linear function.
Step 3: Answer the question.
Tina's allowance increases by  every month is a linear function.
 every month is a linear function.
Recall that for a statement to be linear it must show growth of a constant difference. This means that the output has the same difference for each one increase to the input value. For a statement to be exponential, it must show growth by a common factor.
This question is testing one's ability to identify and prove whether situations and their functions are linear or exponential. The key concept in questions like these, is understanding and recognizing that linear functions grow by equal differences over intervals, where as exponential functions grow by equal factors over intervals.
For the purpose of Common Core Standards, proving that linear functions grow by difference and exponential functions grow by factors, falls within the Cluster A of construct and compare linear, quadratic, and exponential model and solve problems concept (CCSS.Math.content.HSF.LE.A).
Knowing the standard and the concept for which it relates to, we can now do the step-by-step process to solve the problem in question.
Step 1: Examine the statement.
I. Identify if it is increase/decreasing by a constant or by a percentage that is dependent on another value in the statement.
Statement: Tina's allowance increases by  every month. In this particular case the amount of increases by a constant of 
 every month.
II. Conclude whether the statement is linear or exponential.
Since the increase is by a constant, the statement is a linear function.
Step 3: Answer the question.
Tina's allowance increases by  every month is a linear function.
Recall that for a statement to be linear it must show growth of a constant difference. This means that the output has the same difference for each one increase to the input value. For a statement to be exponential, it must show growth by a common factor.
Compare your answer with the correct one above
Determine whether the situation describes a linear or exponential function.
Tina's allowance increases by  every month.
 every month.
Determine whether the situation describes a linear or exponential function.
Tina's allowance increases by  every month.
This question is testing one's ability to identify and prove whether situations and their functions are linear or exponential. The key concept in questions like these, is understanding and recognizing that linear functions grow by equal differences over intervals, where as exponential functions grow by equal factors over intervals.
For the purpose of Common Core Standards, proving that linear functions grow by difference and exponential functions grow by factors, falls within the Cluster A of construct and compare linear, quadratic, and exponential model and solve problems concept (CCSS.Math.content.HSF.LE.A).
Knowing the standard and the concept for which it relates to, we can now do the step-by-step process to solve the problem in question.
Step 1: Examine the statement.
I. Identify if it is increase/decreasing by a constant or by a percentage that is dependent on another value in the statement.
Statement: Tina's allowance increases by  every month. In this particular case the amount of increases by a constant of
 every month. In this particular case the amount of increases by a constant of  every month.
 every month.
II. Conclude whether the statement is linear or exponential.
Since the increase is by a constant, the statement is a linear function.
Step 3: Answer the question.
Tina's allowance increases by  every month is a linear function.
 every month is a linear function.
Recall that for a statement to be linear it must show growth of a constant difference. This means that the output has the same difference for each one increase to the input value. For a statement to be exponential, it must show growth by a common factor.
This question is testing one's ability to identify and prove whether situations and their functions are linear or exponential. The key concept in questions like these, is understanding and recognizing that linear functions grow by equal differences over intervals, where as exponential functions grow by equal factors over intervals.
For the purpose of Common Core Standards, proving that linear functions grow by difference and exponential functions grow by factors, falls within the Cluster A of construct and compare linear, quadratic, and exponential model and solve problems concept (CCSS.Math.content.HSF.LE.A).
Knowing the standard and the concept for which it relates to, we can now do the step-by-step process to solve the problem in question.
Step 1: Examine the statement.
I. Identify if it is increase/decreasing by a constant or by a percentage that is dependent on another value in the statement.
Statement: Tina's allowance increases by  every month. In this particular case the amount of increases by a constant of 
 every month.
II. Conclude whether the statement is linear or exponential.
Since the increase is by a constant, the statement is a linear function.
Step 3: Answer the question.
Tina's allowance increases by  every month is a linear function.
Recall that for a statement to be linear it must show growth of a constant difference. This means that the output has the same difference for each one increase to the input value. For a statement to be exponential, it must show growth by a common factor.
Compare your answer with the correct one above
Determine whether the situation describes a linear or exponential function.
Johnny is  months older than Jane.
 months older than Jane.
Determine whether the situation describes a linear or exponential function.
Johnny is  months older than Jane.
This question is testing one's ability to identify and prove whether situations and their functions are linear or exponential. The key concept in questions like these, is understanding and recognizing that linear functions grow by equal differences over intervals, where as exponential functions grow by equal factors over intervals.
For the purpose of Common Core Standards, proving that linear functions grow by difference and exponential functions grow by factors, falls within the Cluster A of construct and compare linear, quadratic, and exponential model and solve problems concept (CCSS.Math.content.HSF.LE.A).
Knowing the standard and the concept for which it relates to, we can now do the step-by-step process to solve the problem in question.
Step 1: Examine the statement.
I. Identify if it is increase/decreasing by a constant or by a percentage that is dependent on another value in the statement.
Statement: Johnny is  months older than Jane. In this particular case Johnny's age can be written as a function of Jane's age. Since Johnny is
 months older than Jane. In this particular case Johnny's age can be written as a function of Jane's age. Since Johnny is  months older than Jane this is a constant difference. In other words, as the years go on, Johnny's age increase but so does Jane's therefore, Johnny remains
 months older than Jane this is a constant difference. In other words, as the years go on, Johnny's age increase but so does Jane's therefore, Johnny remains  months older than Jane across all time intervals.
 months older than Jane across all time intervals.
II. Conclude whether the statement is linear or exponential.
Since the increase is by a constant, statement two is a linear function.
Step 3: Answer the question.
Johnny is  months older than Jane is a linear function.
 months older than Jane is a linear function.
Recall that for a statement to be linear it must show growth of a constant difference. This means that the output has the same difference for each one increase to the input value. For a statement to be exponential, it must show growth by a common factor.
This question is testing one's ability to identify and prove whether situations and their functions are linear or exponential. The key concept in questions like these, is understanding and recognizing that linear functions grow by equal differences over intervals, where as exponential functions grow by equal factors over intervals.
For the purpose of Common Core Standards, proving that linear functions grow by difference and exponential functions grow by factors, falls within the Cluster A of construct and compare linear, quadratic, and exponential model and solve problems concept (CCSS.Math.content.HSF.LE.A).
Knowing the standard and the concept for which it relates to, we can now do the step-by-step process to solve the problem in question.
Step 1: Examine the statement.
I. Identify if it is increase/decreasing by a constant or by a percentage that is dependent on another value in the statement.
Statement: Johnny is  months older than Jane. In this particular case Johnny's age can be written as a function of Jane's age. Since Johnny is 
 months older than Jane this is a constant difference. In other words, as the years go on, Johnny's age increase but so does Jane's therefore, Johnny remains 
 months older than Jane across all time intervals.
II. Conclude whether the statement is linear or exponential.
Since the increase is by a constant, statement two is a linear function.
Step 3: Answer the question.
Johnny is  months older than Jane is a linear function.
Recall that for a statement to be linear it must show growth of a constant difference. This means that the output has the same difference for each one increase to the input value. For a statement to be exponential, it must show growth by a common factor.
Compare your answer with the correct one above
Determine whether the situation describes a linear or exponential function.
Johnny is  months older than Jane.
 months older than Jane.
Determine whether the situation describes a linear or exponential function.
Johnny is  months older than Jane.
This question is testing one's ability to identify and prove whether situations and their functions are linear or exponential. The key concept in questions like these, is understanding and recognizing that linear functions grow by equal differences over intervals, where as exponential functions grow by equal factors over intervals.
For the purpose of Common Core Standards, proving that linear functions grow by difference and exponential functions grow by factors, falls within the Cluster A of construct and compare linear, quadratic, and exponential model and solve problems concept (CCSS.Math.content.HSF.LE.A).
Knowing the standard and the concept for which it relates to, we can now do the step-by-step process to solve the problem in question.
Step 1: Examine the statement.
I. Identify if it is increase/decreasing by a constant or by a percentage that is dependent on another value in the statement.
Statement: Johnny is  months older than Jane. In this particular case Johnny's age can be written as a function of Jane's age. Since Johnny is
 months older than Jane. In this particular case Johnny's age can be written as a function of Jane's age. Since Johnny is  months older than Jane this is a constant difference. In other words, as the years go on, Johnny's age increase but so does Jane's therefore, Johnny remains
 months older than Jane this is a constant difference. In other words, as the years go on, Johnny's age increase but so does Jane's therefore, Johnny remains  months older than Jane across all time intervals.
 months older than Jane across all time intervals.
II. Conclude whether the statement is linear or exponential.
Since the increase is by a constant, statement two is a linear function.
Step 3: Answer the question.
Johnny is  months older than Jane is a linear function.
 months older than Jane is a linear function.
Recall that for a statement to be linear it must show growth of a constant difference. This means that the output has the same difference for each one increase to the input value. For a statement to be exponential, it must show growth by a common factor.
This question is testing one's ability to identify and prove whether situations and their functions are linear or exponential. The key concept in questions like these, is understanding and recognizing that linear functions grow by equal differences over intervals, where as exponential functions grow by equal factors over intervals.
For the purpose of Common Core Standards, proving that linear functions grow by difference and exponential functions grow by factors, falls within the Cluster A of construct and compare linear, quadratic, and exponential model and solve problems concept (CCSS.Math.content.HSF.LE.A).
Knowing the standard and the concept for which it relates to, we can now do the step-by-step process to solve the problem in question.
Step 1: Examine the statement.
I. Identify if it is increase/decreasing by a constant or by a percentage that is dependent on another value in the statement.
Statement: Johnny is  months older than Jane. In this particular case Johnny's age can be written as a function of Jane's age. Since Johnny is 
 months older than Jane this is a constant difference. In other words, as the years go on, Johnny's age increase but so does Jane's therefore, Johnny remains 
 months older than Jane across all time intervals.
II. Conclude whether the statement is linear or exponential.
Since the increase is by a constant, statement two is a linear function.
Step 3: Answer the question.
Johnny is  months older than Jane is a linear function.
Recall that for a statement to be linear it must show growth of a constant difference. This means that the output has the same difference for each one increase to the input value. For a statement to be exponential, it must show growth by a common factor.
Compare your answer with the correct one above
Determine whether the situations below are described as linear or exponential functions.
Tina's allowance increases  every month.
 every month.
Johnny is  years older than Jane.
 years older than Jane.
Determine whether the situations below are described as linear or exponential functions.
Tina's allowance increases  every month.
Johnny is  years older than Jane.
This question is testing one's ability to identify and prove whether situations and their functions are linear or exponential. The key concept in questions like these, is understanding and recognizing that linear functions grow by equal differences over intervals, where as exponential functions grow by equal factors over intervals.
For the purpose of Common Core Standards, proving that linear functions grow by difference and exponential functions grow by factors, falls within the Cluster A of construct and compare linear, quadratic, and exponential model and solve problems concept (CCSS.Math.content.HSF.LE.A).
Knowing the standard and the concept for which it relates to, we can now do the step-by-step process to solve the problem in question.
Step 1: Examine the first statement.
I. Identify if it is increase/decreasing by a constant or by a percentage that is dependent on another value in the statement.
Statement one: Tina's allowance increases  every month. In this particular case the amount of increase depends on the monthly allowance. In other words as the monthly allowance increases the
 every month. In this particular case the amount of increase depends on the monthly allowance. In other words as the monthly allowance increases the  increase becomes a greater dollar amount as time increases. Therefore, the increase is by a percentage.
 increase becomes a greater dollar amount as time increases. Therefore, the increase is by a percentage.
II. Conclude whether the statement is linear or exponential.
Since the increase is by a percentage, statement one is an exponential function.
Step 2: Examine the second statement.
I. Identify if it is increase/decreasing by a constant or by a percentage that is dependent on another value in the statement.
Statement two: Johnny is  years older than Jane. In this particular case Johnny's age can be written as a function of Jane's age. Since Johnny is
 years older than Jane. In this particular case Johnny's age can be written as a function of Jane's age. Since Johnny is  years older than Jane this is a constant difference. In other words, as the years go on, Johnny's age increase but so does Jane's therefore, Johnny remains
 years older than Jane this is a constant difference. In other words, as the years go on, Johnny's age increase but so does Jane's therefore, Johnny remains  years older than Jane across all time intervals.
 years older than Jane across all time intervals.
II. Conclude whether the statement is linear or exponential.
Since the increase is by a constant, statement two is a linear function.
Step 3: Answer the question.
Tina's allowance increases  every month is an exponential function.
 every month is an exponential function.
Johnny is  years older than Jane is a linear function.
 years older than Jane is a linear function.
Recall that for a statement to be linear it must show growth of a constant difference. This means that the output has the same difference for each one increase to the input value. For a statement to be exponential, it must show growth by a common factor.
This question is testing one's ability to identify and prove whether situations and their functions are linear or exponential. The key concept in questions like these, is understanding and recognizing that linear functions grow by equal differences over intervals, where as exponential functions grow by equal factors over intervals.
For the purpose of Common Core Standards, proving that linear functions grow by difference and exponential functions grow by factors, falls within the Cluster A of construct and compare linear, quadratic, and exponential model and solve problems concept (CCSS.Math.content.HSF.LE.A).
Knowing the standard and the concept for which it relates to, we can now do the step-by-step process to solve the problem in question.
Step 1: Examine the first statement.
I. Identify if it is increase/decreasing by a constant or by a percentage that is dependent on another value in the statement.
Statement one: Tina's allowance increases  every month. In this particular case the amount of increase depends on the monthly allowance. In other words as the monthly allowance increases the 
 increase becomes a greater dollar amount as time increases. Therefore, the increase is by a percentage.
II. Conclude whether the statement is linear or exponential.
Since the increase is by a percentage, statement one is an exponential function.
Step 2: Examine the second statement.
I. Identify if it is increase/decreasing by a constant or by a percentage that is dependent on another value in the statement.
Statement two: Johnny is  years older than Jane. In this particular case Johnny's age can be written as a function of Jane's age. Since Johnny is 
 years older than Jane this is a constant difference. In other words, as the years go on, Johnny's age increase but so does Jane's therefore, Johnny remains 
 years older than Jane across all time intervals.
II. Conclude whether the statement is linear or exponential.
Since the increase is by a constant, statement two is a linear function.
Step 3: Answer the question.
Tina's allowance increases  every month is an exponential function.
Johnny is  years older than Jane is a linear function.
Recall that for a statement to be linear it must show growth of a constant difference. This means that the output has the same difference for each one increase to the input value. For a statement to be exponential, it must show growth by a common factor.
Compare your answer with the correct one above
Determine whether the situation describes a linear or exponential function.
Tina's allowance increases by  every month.
 every month.
Determine whether the situation describes a linear or exponential function.
Tina's allowance increases by  every month.
This question is testing one's ability to identify and prove whether situations and their functions are linear or exponential. The key concept in questions like these, is understanding and recognizing that linear functions grow by equal differences over intervals, where as exponential functions grow by equal factors over intervals.
For the purpose of Common Core Standards, proving that linear functions grow by difference and exponential functions grow by factors, falls within the Cluster A of construct and compare linear, quadratic, and exponential model and solve problems concept (CCSS.Math.content.HSF.LE.A).
Knowing the standard and the concept for which it relates to, we can now do the step-by-step process to solve the problem in question.
Step 1: Examine the statement.
I. Identify if it is increase/decreasing by a constant or by a percentage that is dependent on another value in the statement.
Statement: Tina's allowance increases by  every month. In this particular case the amount of increases by a constant of two dollars every month.
 every month. In this particular case the amount of increases by a constant of two dollars every month.
II. Conclude whether the statement is linear or exponential.
Since the increase is by a constant, the statement is a linear function.
Step 3: Answer the question.
Tina's allowance increases by  every month is a linear function.
 every month is a linear function.
Recall that for a statement to be linear it must show growth of a constant difference. This means that the output has the same difference for each one increase to the input value. For a statement to be exponential, it must show growth by a common factor.
This question is testing one's ability to identify and prove whether situations and their functions are linear or exponential. The key concept in questions like these, is understanding and recognizing that linear functions grow by equal differences over intervals, where as exponential functions grow by equal factors over intervals.
For the purpose of Common Core Standards, proving that linear functions grow by difference and exponential functions grow by factors, falls within the Cluster A of construct and compare linear, quadratic, and exponential model and solve problems concept (CCSS.Math.content.HSF.LE.A).
Knowing the standard and the concept for which it relates to, we can now do the step-by-step process to solve the problem in question.
Step 1: Examine the statement.
I. Identify if it is increase/decreasing by a constant or by a percentage that is dependent on another value in the statement.
Statement: Tina's allowance increases by  every month. In this particular case the amount of increases by a constant of two dollars every month.
II. Conclude whether the statement is linear or exponential.
Since the increase is by a constant, the statement is a linear function.
Step 3: Answer the question.
Tina's allowance increases by  every month is a linear function.
Recall that for a statement to be linear it must show growth of a constant difference. This means that the output has the same difference for each one increase to the input value. For a statement to be exponential, it must show growth by a common factor.
Compare your answer with the correct one above
Determine whether the situation describes a linear or exponential function.
Tina's allowance increases  every month.
 every month.
Determine whether the situation describes a linear or exponential function.
Tina's allowance increases  every month.
This question is testing one's ability to identify and prove whether situations and their functions are linear or exponential. The key concept in questions like these, is understanding and recognizing that linear functions grow by equal differences over intervals, where as exponential functions grow by equal factors over intervals.
For the purpose of Common Core Standards, proving that linear functions grow by difference and exponential functions grow by factors, falls within the Cluster A of construct and compare linear, quadratic, and exponential model and solve problems concept (CCSS.Math.content.HSF.LE.A).
Knowing the standard and the concept for which it relates to, we can now do the step-by-step process to solve the problem in question.
Step 1: Examine the statement.
I. Identify if it is increase/decreasing by a constant or by a percentage that is dependent on another value in the statement.
Statement: Tina's allowance increases  every month. In this particular case the amount of increase depends on the monthly allowance. In other words as the monthly allowance increases the
 every month. In this particular case the amount of increase depends on the monthly allowance. In other words as the monthly allowance increases the  increase becomes a greater dollar amount as time increases. Therefore, the increase is by a percentage.
 increase becomes a greater dollar amount as time increases. Therefore, the increase is by a percentage.
II. Conclude whether the statement is linear or exponential.
Since the increase is by a percentage, statement one is an exponential function.
Step 3: Answer the question.
Tina's allowance increases  every month is an exponential function.
 every month is an exponential function.
Recall that for a statement to be linear it must show growth of a constant difference. This means that the output has the same difference for each one increase to the input value. For a statement to be exponential, it must show growth by a common factor.
This question is testing one's ability to identify and prove whether situations and their functions are linear or exponential. The key concept in questions like these, is understanding and recognizing that linear functions grow by equal differences over intervals, where as exponential functions grow by equal factors over intervals.
For the purpose of Common Core Standards, proving that linear functions grow by difference and exponential functions grow by factors, falls within the Cluster A of construct and compare linear, quadratic, and exponential model and solve problems concept (CCSS.Math.content.HSF.LE.A).
Knowing the standard and the concept for which it relates to, we can now do the step-by-step process to solve the problem in question.
Step 1: Examine the statement.
I. Identify if it is increase/decreasing by a constant or by a percentage that is dependent on another value in the statement.
Statement: Tina's allowance increases  every month. In this particular case the amount of increase depends on the monthly allowance. In other words as the monthly allowance increases the 
 increase becomes a greater dollar amount as time increases. Therefore, the increase is by a percentage.
II. Conclude whether the statement is linear or exponential.
Since the increase is by a percentage, statement one is an exponential function.
Step 3: Answer the question.
Tina's allowance increases  every month is an exponential function.
Recall that for a statement to be linear it must show growth of a constant difference. This means that the output has the same difference for each one increase to the input value. For a statement to be exponential, it must show growth by a common factor.
Compare your answer with the correct one above
Determine whether the situation describes a linear or exponential function.
Johnny is  years older than Jane.
 years older than Jane.
Determine whether the situation describes a linear or exponential function.
Johnny is  years older than Jane.
This question is testing one's ability to identify and prove whether situations and their functions are linear or exponential. The key concept in questions like these, is understanding and recognizing that linear functions grow by equal differences over intervals, where as exponential functions grow by equal factors over intervals.
For the purpose of Common Core Standards, proving that linear functions grow by difference and exponential functions grow by factors, falls within the Cluster A of construct and compare linear, quadratic, and exponential model and solve problems concept (CCSS.Math.content.HSF.LE.A).
Knowing the standard and the concept for which it relates to, we can now do the step-by-step process to solve the problem in question.
Step 1: Examine the statement.
I. Identify if it is increase/decreasing by a constant or by a percentage that is dependent on another value in the statement.
Statement: Johnny is  years older than Jane. In this particular case Johnny's age can be written as a function of Jane's age. Since Johnny is
 years older than Jane. In this particular case Johnny's age can be written as a function of Jane's age. Since Johnny is  years older than Jane this is a constant difference. In other words, as the years go on, Johnny's age increase but so does Jane's therefore, Johnny remains
 years older than Jane this is a constant difference. In other words, as the years go on, Johnny's age increase but so does Jane's therefore, Johnny remains  years older than Jane across all time intervals.
 years older than Jane across all time intervals.
II. Conclude whether the statement is linear or exponential.
Since the increase is by a constant, statement two is a linear function.
Step 3: Answer the question.
Johnny is  years older than Jane is a linear function.
 years older than Jane is a linear function.
Recall that for a statement to be linear it must show growth of a constant difference. This means that the output has the same difference for each one increase to the input value. For a statement to be exponential, it must show growth by a common factor.
This question is testing one's ability to identify and prove whether situations and their functions are linear or exponential. The key concept in questions like these, is understanding and recognizing that linear functions grow by equal differences over intervals, where as exponential functions grow by equal factors over intervals.
For the purpose of Common Core Standards, proving that linear functions grow by difference and exponential functions grow by factors, falls within the Cluster A of construct and compare linear, quadratic, and exponential model and solve problems concept (CCSS.Math.content.HSF.LE.A).
Knowing the standard and the concept for which it relates to, we can now do the step-by-step process to solve the problem in question.
Step 1: Examine the statement.
I. Identify if it is increase/decreasing by a constant or by a percentage that is dependent on another value in the statement.
Statement: Johnny is  years older than Jane. In this particular case Johnny's age can be written as a function of Jane's age. Since Johnny is 
 years older than Jane this is a constant difference. In other words, as the years go on, Johnny's age increase but so does Jane's therefore, Johnny remains 
 years older than Jane across all time intervals.
II. Conclude whether the statement is linear or exponential.
Since the increase is by a constant, statement two is a linear function.
Step 3: Answer the question.
Johnny is  years older than Jane is a linear function.
Recall that for a statement to be linear it must show growth of a constant difference. This means that the output has the same difference for each one increase to the input value. For a statement to be exponential, it must show growth by a common factor.
Compare your answer with the correct one above
Determine whether the situation describes a linear or exponential function.
Johnny is  years older than Jane.
 years older than Jane.
Determine whether the situation describes a linear or exponential function.
Johnny is  years older than Jane.
This question is testing one's ability to identify and prove whether situations and their functions are linear or exponential. The key concept in questions like these, is understanding and recognizing that linear functions grow by equal differences over intervals, where as exponential functions grow by equal factors over intervals.
For the purpose of Common Core Standards, proving that linear functions grow by difference and exponential functions grow by factors, falls within the Cluster A of construct and compare linear, quadratic, and exponential model and solve problems concept (CCSS.Math.content.HSF.LE.A).
Knowing the standard and the concept for which it relates to, we can now do the step-by-step process to solve the problem in question.
Step 1: Examine the statement.
I. Identify if it is increase/decreasing by a constant or by a percentage that is dependent on another value in the statement.
Statement: Johnny is  years older than Jane. In this particular case Johnny's age can be written as a function of Jane's age. Since Johnny is
 years older than Jane. In this particular case Johnny's age can be written as a function of Jane's age. Since Johnny is  years older than Jane this is a constant difference. In other words, as the years go on, Johnny's age increase but so does Jane's therefore, Johnny remains
 years older than Jane this is a constant difference. In other words, as the years go on, Johnny's age increase but so does Jane's therefore, Johnny remains  years older than Jane across all time intervals.
 years older than Jane across all time intervals.
II. Conclude whether the statement is linear or exponential.
Since the increase is by a constant, statement two is a linear function.
Step 3: Answer the question.
Johnny is  years older than Jane is a linear function.
 years older than Jane is a linear function.
Recall that for a statement to be linear it must show growth of a constant difference. This means that the output has the same difference for each one increase to the input value. For a statement to be exponential, it must show growth by a common factor.
This question is testing one's ability to identify and prove whether situations and their functions are linear or exponential. The key concept in questions like these, is understanding and recognizing that linear functions grow by equal differences over intervals, where as exponential functions grow by equal factors over intervals.
For the purpose of Common Core Standards, proving that linear functions grow by difference and exponential functions grow by factors, falls within the Cluster A of construct and compare linear, quadratic, and exponential model and solve problems concept (CCSS.Math.content.HSF.LE.A).
Knowing the standard and the concept for which it relates to, we can now do the step-by-step process to solve the problem in question.
Step 1: Examine the statement.
I. Identify if it is increase/decreasing by a constant or by a percentage that is dependent on another value in the statement.
Statement: Johnny is  years older than Jane. In this particular case Johnny's age can be written as a function of Jane's age. Since Johnny is 
 years older than Jane this is a constant difference. In other words, as the years go on, Johnny's age increase but so does Jane's therefore, Johnny remains 
 years older than Jane across all time intervals.
II. Conclude whether the statement is linear or exponential.
Since the increase is by a constant, statement two is a linear function.
Step 3: Answer the question.
Johnny is  years older than Jane is a linear function.
Recall that for a statement to be linear it must show growth of a constant difference. This means that the output has the same difference for each one increase to the input value. For a statement to be exponential, it must show growth by a common factor.
Compare your answer with the correct one above
Determine whether the situation describes a linear or exponential function.
Tina's allowance increases  every month.
 every month.
Determine whether the situation describes a linear or exponential function.
Tina's allowance increases  every month.
This question is testing one's ability to identify and prove whether situations and their functions are linear or exponential. The key concept in questions like these, is understanding and recognizing that linear functions grow by equal differences over intervals, where as exponential functions grow by equal factors over intervals.
For the purpose of Common Core Standards, proving that linear functions grow by difference and exponential functions grow by factors, falls within the Cluster A of construct and compare linear, quadratic, and exponential model and solve problems concept (CCSS.Math.content.HSF.LE.A).
Knowing the standard and the concept for which it relates to, we can now do the step-by-step process to solve the problem in question.
Step 1: Examine the statement.
I. Identify if it is increase/decreasing by a constant or by a percentage that is dependent on another value in the statement.
Statement: Tina's allowance increases  every month. In this particular case the amount of increase depends on the monthly allowance. In other words as the monthly allowance increases the
 every month. In this particular case the amount of increase depends on the monthly allowance. In other words as the monthly allowance increases the  increase becomes a greater dollar amount as time increases. Therefore, the increase is by a percentage.
 increase becomes a greater dollar amount as time increases. Therefore, the increase is by a percentage.
II. Conclude whether the statement is linear or exponential.
Since the increase is by a percentage, statement one is an exponential function.
Step 3: Answer the question.
Tina's allowance increases  every month is an exponential function.
 every month is an exponential function.
Recall that for a statement to be linear it must show growth of a constant difference. This means that the output has the same difference for each one increase to the input value. For a statement to be exponential, it must show growth by a common factor.
This question is testing one's ability to identify and prove whether situations and their functions are linear or exponential. The key concept in questions like these, is understanding and recognizing that linear functions grow by equal differences over intervals, where as exponential functions grow by equal factors over intervals.
For the purpose of Common Core Standards, proving that linear functions grow by difference and exponential functions grow by factors, falls within the Cluster A of construct and compare linear, quadratic, and exponential model and solve problems concept (CCSS.Math.content.HSF.LE.A).
Knowing the standard and the concept for which it relates to, we can now do the step-by-step process to solve the problem in question.
Step 1: Examine the statement.
I. Identify if it is increase/decreasing by a constant or by a percentage that is dependent on another value in the statement.
Statement: Tina's allowance increases  every month. In this particular case the amount of increase depends on the monthly allowance. In other words as the monthly allowance increases the 
 increase becomes a greater dollar amount as time increases. Therefore, the increase is by a percentage.
II. Conclude whether the statement is linear or exponential.
Since the increase is by a percentage, statement one is an exponential function.
Step 3: Answer the question.
Tina's allowance increases  every month is an exponential function.
Recall that for a statement to be linear it must show growth of a constant difference. This means that the output has the same difference for each one increase to the input value. For a statement to be exponential, it must show growth by a common factor.
Compare your answer with the correct one above
Determine whether the situation describes a linear or exponential function.
Tina's allowance increases  every month.
 every month.
Determine whether the situation describes a linear or exponential function.
Tina's allowance increases  every month.
This question is testing one's ability to identify and prove whether situations and their functions are linear or exponential. The key concept in questions like these, is understanding and recognizing that linear functions grow by equal differences over intervals, where as exponential functions grow by equal factors over intervals.
For the purpose of Common Core Standards, proving that linear functions grow by difference and exponential functions grow by factors, falls within the Cluster A of construct and compare linear, quadratic, and exponential model and solve problems concept (CCSS.Math.content.HSF.LE.A).
Knowing the standard and the concept for which it relates to, we can now do the step-by-step process to solve the problem in question.
Step 1: Examine the statement.
I. Identify if it is increase/decreasing by a constant or by a percentage that is dependent on another value in the statement.
Statement: Tina's allowance increases  every month. In this particular case the amount of increase depends on the monthly allowance. In other words as the monthly allowance increases the
 every month. In this particular case the amount of increase depends on the monthly allowance. In other words as the monthly allowance increases the  increase becomes a greater dollar amount as time increases. Therefore, the increase is by a percentage.
 increase becomes a greater dollar amount as time increases. Therefore, the increase is by a percentage.
II. Conclude whether the statement is linear or exponential.
Since the increase is by a percentage, statement one is an exponential function.
Step 3: Answer the question.
Tina's allowance increases  every month is an exponential function.
 every month is an exponential function.
Recall that for a statement to be linear it must show growth of a constant difference. This means that the output has the same difference for each one increase to the input value. For a statement to be exponential, it must show growth by a common factor.
This question is testing one's ability to identify and prove whether situations and their functions are linear or exponential. The key concept in questions like these, is understanding and recognizing that linear functions grow by equal differences over intervals, where as exponential functions grow by equal factors over intervals.
For the purpose of Common Core Standards, proving that linear functions grow by difference and exponential functions grow by factors, falls within the Cluster A of construct and compare linear, quadratic, and exponential model and solve problems concept (CCSS.Math.content.HSF.LE.A).
Knowing the standard and the concept for which it relates to, we can now do the step-by-step process to solve the problem in question.
Step 1: Examine the statement.
I. Identify if it is increase/decreasing by a constant or by a percentage that is dependent on another value in the statement.
Statement: Tina's allowance increases  every month. In this particular case the amount of increase depends on the monthly allowance. In other words as the monthly allowance increases the 
 increase becomes a greater dollar amount as time increases. Therefore, the increase is by a percentage.
II. Conclude whether the statement is linear or exponential.
Since the increase is by a percentage, statement one is an exponential function.
Step 3: Answer the question.
Tina's allowance increases  every month is an exponential function.
Recall that for a statement to be linear it must show growth of a constant difference. This means that the output has the same difference for each one increase to the input value. For a statement to be exponential, it must show growth by a common factor.
Compare your answer with the correct one above
Determine whether the situation describes a linear or exponential function.
Johnny is  years older than Jane.
 years older than Jane.
Determine whether the situation describes a linear or exponential function.
Johnny is  years older than Jane.
This question is testing one's ability to identify and prove whether situations and their functions are linear or exponential. The key concept in questions like these, is understanding and recognizing that linear functions grow by equal differences over intervals, where as exponential functions grow by equal factors over intervals.
For the purpose of Common Core Standards, proving that linear functions grow by difference and exponential functions grow by factors, falls within the Cluster A of construct and compare linear, quadratic, and exponential model and solve problems concept (CCSS.Math.content.HSF.LE.A).
Knowing the standard and the concept for which it relates to, we can now do the step-by-step process to solve the problem in question.
Step 1: Examine the statement.
I. Identify if it is increase/decreasing by a constant or by a percentage that is dependent on another value in the statement.
Statement: Johnny is  years older than Jane. In this particular case Johnny's age can be written as a function of Jane's age. Since Johnny is
 years older than Jane. In this particular case Johnny's age can be written as a function of Jane's age. Since Johnny is  years older than Jane this is a constant difference. In other words, as the years go on, Johnny's age increase but so does Jane's therefore, Johnny remains
 years older than Jane this is a constant difference. In other words, as the years go on, Johnny's age increase but so does Jane's therefore, Johnny remains  years older than Jane across all time intervals.
 years older than Jane across all time intervals.
II. Conclude whether the statement is linear or exponential.
Since the increase is by a constant, statement two is a linear function.
Step 3: Answer the question.
Johnny is  years older than Jane is a linear function.
 years older than Jane is a linear function.
Recall that for a statement to be linear it must show growth of a constant difference. This means that the output has the same difference for each one increase to the input value. For a statement to be exponential, it must show growth by a common factor.
This question is testing one's ability to identify and prove whether situations and their functions are linear or exponential. The key concept in questions like these, is understanding and recognizing that linear functions grow by equal differences over intervals, where as exponential functions grow by equal factors over intervals.
For the purpose of Common Core Standards, proving that linear functions grow by difference and exponential functions grow by factors, falls within the Cluster A of construct and compare linear, quadratic, and exponential model and solve problems concept (CCSS.Math.content.HSF.LE.A).
Knowing the standard and the concept for which it relates to, we can now do the step-by-step process to solve the problem in question.
Step 1: Examine the statement.
I. Identify if it is increase/decreasing by a constant or by a percentage that is dependent on another value in the statement.
Statement: Johnny is  years older than Jane. In this particular case Johnny's age can be written as a function of Jane's age. Since Johnny is 
 years older than Jane this is a constant difference. In other words, as the years go on, Johnny's age increase but so does Jane's therefore, Johnny remains 
 years older than Jane across all time intervals.
II. Conclude whether the statement is linear or exponential.
Since the increase is by a constant, statement two is a linear function.
Step 3: Answer the question.
Johnny is  years older than Jane is a linear function.
Recall that for a statement to be linear it must show growth of a constant difference. This means that the output has the same difference for each one increase to the input value. For a statement to be exponential, it must show growth by a common factor.
Compare your answer with the correct one above