College Algebra › Dividing Polynomials
Divide the trinomial below by .
We can accomplish this division by re-writing the problem as a fraction.
The denominator will distribute, allowing us to address each element separately.
Now we can cancel common factors to find our answer.
Divide:
Divide the leading coefficients to get the first term of the quotient:
, the first term of the quotient
Multiply this term by the divisor, and subtract the product from the dividend:
Repeat these steps with the differences until the difference is an integer. As it turns out, we need to repeat only once:
, the second term of the quotient
, the remainder
Putting it all together, the quotient can be written as .
Divide:
First, rewrite this problem so that the missing term is replaced by
Divide the leading coefficients:
, the first term of the quotient
Multiply this term by the divisor, and subtract the product from the dividend:
Repeat this process with each difference:
, the second term of the quotient
One more time:
, the third term of the quotient
, the remainder
The quotient is and the remainder is
; this can be rewritten as a quotient of
Simplify the following polynomial:
Determine if there are any common factors between the numerator and the denominator:
There are no common factors, so we use synthetic division to simplify the polynomial:
_________________
Bring down the 1, from the first column:
_________________
Multiply 1 by -1, and add the product to -3:
_________________
Multiply -4 by -1, and add the product to -10:
_________________
Solution: