Cell Biology - Biology
Card 0 of 1084
The shape of an animal cell is determined by which of the following?
The shape of an animal cell is determined by which of the following?
The cytoskeletion determines cell shape. The cytoskeleton consists of three different types of filamentous proteins: microfilaments, intermediate filaments, and microtubules. Elements of the cytoskeleton can interact with the cell membrane and cell junctions to alter the cell's overall structure.
There are no cell walls in animal cells, although the cell wall does play a large part in determining cell shape in organisms that possess them (plants, bacteria, fungi).
The cytoskeletion determines cell shape. The cytoskeleton consists of three different types of filamentous proteins: microfilaments, intermediate filaments, and microtubules. Elements of the cytoskeleton can interact with the cell membrane and cell junctions to alter the cell's overall structure.
There are no cell walls in animal cells, although the cell wall does play a large part in determining cell shape in organisms that possess them (plants, bacteria, fungi).
Compare your answer with the correct one above
Which organelle works to synthesize an unstable form of energy?
Which organelle works to synthesize an unstable form of energy?
The unstable form of energy that is syntheisized refers to ATP. ATP is an unstable; its three phosphate groups are all negatively charged and repel one another. Remember that BOTH the mitochondria and chloroplast participate in ATP synthesis via chemiosmosis; however, only the chloroplast participates in glucose synthesis via photosynthesis. Note that glucose is a stable form of energy and is not readily usable until it is broken down in the process known as glycolysis.
The unstable form of energy that is syntheisized refers to ATP. ATP is an unstable; its three phosphate groups are all negatively charged and repel one another. Remember that BOTH the mitochondria and chloroplast participate in ATP synthesis via chemiosmosis; however, only the chloroplast participates in glucose synthesis via photosynthesis. Note that glucose is a stable form of energy and is not readily usable until it is broken down in the process known as glycolysis.
Compare your answer with the correct one above
The nucleolus __________.
The nucleolus __________.
The nucleolus is a subdivision of the nucleus; thus, it is only found in eukaryotes. It is the site of ribosome assembly. The nucleolus is made of RNA and proteins.
The nucleolus is a subdivision of the nucleus; thus, it is only found in eukaryotes. It is the site of ribosome assembly. The nucleolus is made of RNA and proteins.
Compare your answer with the correct one above
Histones __________.
Histones __________.
Histones are proteins found in the nucleus of eukaryotic cells. DNA wraps itself around histones to further condense. Also, depending on how tightly the DNA is wrapped around the histones, it may or may not be availible for activity (e.g. replication or transcription). Cells modify the interaction between DNA and histones around certain genes under certain conditions to make those genes available or unavailable as needed.
Histones are proteins found in the nucleus of eukaryotic cells. DNA wraps itself around histones to further condense. Also, depending on how tightly the DNA is wrapped around the histones, it may or may not be availible for activity (e.g. replication or transcription). Cells modify the interaction between DNA and histones around certain genes under certain conditions to make those genes available or unavailable as needed.
Compare your answer with the correct one above
In which of the following organisms are vacuoles not usually found?
In which of the following organisms are vacuoles not usually found?
Vacuoles are membrane-bound structures that are found in bacterial, plant, fungal, and occasionally, animal cells. Vacuoles function in storage of water and waste and in maintenance of turgor pressure in plants.
Vacuoles are membrane-bound structures that are found in bacterial, plant, fungal, and occasionally, animal cells. Vacuoles function in storage of water and waste and in maintenance of turgor pressure in plants.
Compare your answer with the correct one above
Which product of glycolysis will enter the citric acid cycle?
Which product of glycolysis will enter the citric acid cycle?
The purpose of glycolysis is to generate pyruvate and NADH from glucose. The pyruvate will enter the citric acid cycle and the NADH will be used to donate a proton and electron to the electron transport chain, helping to generate the proton gradient for ATP synthesis. The first step of the citric acid cycle is the conversion of pyruvate to acetyl-CoA.
The purpose of glycolysis is to generate pyruvate and NADH from glucose. The pyruvate will enter the citric acid cycle and the NADH will be used to donate a proton and electron to the electron transport chain, helping to generate the proton gradient for ATP synthesis. The first step of the citric acid cycle is the conversion of pyruvate to acetyl-CoA.
Compare your answer with the correct one above
What is the primary role of lactic acid fermentation?
What is the primary role of lactic acid fermentation?
Lactic acid fermentation occurs in the absence of oxygen, and involves an enzyme that converts pyruvate from glycolysis to lactic acid via the transfer of two hydrogen atoms from NADH and H+. The NADH is oxidized to form NAD+, a required component to catalyze glycolysis.
During anaerobic respiration the Krebs cycle and electron transport chain are not functional, leaving all cell metabolism reliant on glycolysis. Without NAD+, glycolysis would also become non-functional and cell metabolism would completely stop. Both alcoholic fermentation and lactic acid fermentation serve this purpose or replenishing glycolysis reactants, but occur in different organisms. Lactic acid fermentation is most common in animals while alcoholic fermentation occurs in unicellular organisms, such as yeast.
Lactic acid fermentation occurs in the absence of oxygen, and involves an enzyme that converts pyruvate from glycolysis to lactic acid via the transfer of two hydrogen atoms from NADH and H+. The NADH is oxidized to form NAD+, a required component to catalyze glycolysis.
During anaerobic respiration the Krebs cycle and electron transport chain are not functional, leaving all cell metabolism reliant on glycolysis. Without NAD+, glycolysis would also become non-functional and cell metabolism would completely stop. Both alcoholic fermentation and lactic acid fermentation serve this purpose or replenishing glycolysis reactants, but occur in different organisms. Lactic acid fermentation is most common in animals while alcoholic fermentation occurs in unicellular organisms, such as yeast.
Compare your answer with the correct one above
Which of the following is produced by cellular respiration?
Which of the following is produced by cellular respiration?
Cellular respiration is the metabolic process used to generate energy, in the form of ATP, that can power cellular functions. During cellular respiration, glucose is broken down and used to generate NADP and FADH2. These molecules then donate electrons to the electron transport chain, power the proton gradient that is responsible for producing ATP through ATP synthase.
Glucose and oxygen are consumed during this process, while water and carbon dioxide are produced, along with ATP. Sulfur dioxide and carbon monoxide are not involved in the processes of cellular respiration.
Cellular respiration is the metabolic process used to generate energy, in the form of ATP, that can power cellular functions. During cellular respiration, glucose is broken down and used to generate NADP and FADH2. These molecules then donate electrons to the electron transport chain, power the proton gradient that is responsible for producing ATP through ATP synthase.
Glucose and oxygen are consumed during this process, while water and carbon dioxide are produced, along with ATP. Sulfur dioxide and carbon monoxide are not involved in the processes of cellular respiration.
Compare your answer with the correct one above
Which of the following statements about glycolysis are true?
Which of the following statements about glycolysis are true?
In glycolysis, which takes place in the cytoplasm, 4 ATP are made and 2 ATP are spent. This means that there is a net gain of 2 ATP, which are produced via substrate level phosphorylation, which involves adding a phosphate to ADP to yield ATP.
In glycolysis, which takes place in the cytoplasm, 4 ATP are made and 2 ATP are spent. This means that there is a net gain of 2 ATP, which are produced via substrate level phosphorylation, which involves adding a phosphate to ADP to yield ATP.
Compare your answer with the correct one above
During glycolysis, what is the net gain of NADH, ATP, and pyruvate per glucose molecule?
During glycolysis, what is the net gain of NADH, ATP, and pyruvate per glucose molecule?
The overall process of glycolysis is:

The net gain of pyruvate, NADH, and ATP during glycolysis is 2 pyruvate, 2 NADH, and 2 ATP per molecule of glucose. Although the process of glycolysis yields 4 ATP, the early steps of glycolysis use 2 ATP to convert glucose into 2 phosphoglyceraldehydes (note: phosphoglyceraldehyde is a 3 carbon molecule) leading to a net gain of 2 ATP.
The overall process of glycolysis is:
The net gain of pyruvate, NADH, and ATP during glycolysis is 2 pyruvate, 2 NADH, and 2 ATP per molecule of glucose. Although the process of glycolysis yields 4 ATP, the early steps of glycolysis use 2 ATP to convert glucose into 2 phosphoglyceraldehydes (note: phosphoglyceraldehyde is a 3 carbon molecule) leading to a net gain of 2 ATP.
Compare your answer with the correct one above
Which of the following reactions depicts lactic acid fermentation in animals?
Which of the following reactions depicts lactic acid fermentation in animals?
The process of lactic acid fermentation is:
Pyruvate + NADH +
Lactate + 
(under hypoxic or partially anaerobic conditions)
Lactic acid fermentation is a biological process where pyruvate is converted into
and lactate under hypoxic conditions. It occurs in some bacterial cells, and some animal cells such as muscles. This process is catalyzed by the enzyme lactate dehydrogenase. If oxygen is present in the cell, many organisms will bypass fermentation and undergo cellular respiration. (Fun fact: lactic acid fermentation is utilized to produce kimchi, sauerkraut, and yogurt). Animal muscle cells will undergo lactic acid fermentation, when starved of oxygen. This process is a last resort for energy and cannot be tolerated for long periods of time.
The process of lactic acid fermentation is:
Pyruvate + NADH +
Lactate +
(under hypoxic or partially anaerobic conditions)
Lactic acid fermentation is a biological process where pyruvate is converted into and lactate under hypoxic conditions. It occurs in some bacterial cells, and some animal cells such as muscles. This process is catalyzed by the enzyme lactate dehydrogenase. If oxygen is present in the cell, many organisms will bypass fermentation and undergo cellular respiration. (Fun fact: lactic acid fermentation is utilized to produce kimchi, sauerkraut, and yogurt). Animal muscle cells will undergo lactic acid fermentation, when starved of oxygen. This process is a last resort for energy and cannot be tolerated for long periods of time.
Compare your answer with the correct one above
Where does glycolysis take place in eukaryotic cells?
Where does glycolysis take place in eukaryotic cells?
The process of glycolysis (glucose to pyruvate) occurs in the cytosol.
Once formed, pyruvate can have numerous fates. In yeasts it can remain in the cytosol and undergo alcoholic fermentation. Pyruvate can also undergo lactic acid fermentation (under hypoxic conditions) within the cytosol of red blood cells and active muscles. Additionally, pyruvate can undergo cellular respiration in the mitochondria where it is oxidized completely into carbon dioxide and water.
The process of glycolysis (glucose to pyruvate) occurs in the cytosol.
Once formed, pyruvate can have numerous fates. In yeasts it can remain in the cytosol and undergo alcoholic fermentation. Pyruvate can also undergo lactic acid fermentation (under hypoxic conditions) within the cytosol of red blood cells and active muscles. Additionally, pyruvate can undergo cellular respiration in the mitochondria where it is oxidized completely into carbon dioxide and water.
Compare your answer with the correct one above
Which of the following best describes where the energy comes from that drives the formation of ATP from ADP and inorganic phosphates?
Which of the following best describes where the energy comes from that drives the formation of ATP from ADP and inorganic phosphates?
Energy from catabolism—exergonic or energy-yielding processes—is used to drive the formation of ATP from ADP and inorganic phosphate because ATP formation requires energy to be made. Catabolism is a pathway, which breaks down a larger molecule into smaller ones. Glycolysis is an example of a catabolic pathway.
Energy from catabolism—exergonic or energy-yielding processes—is used to drive the formation of ATP from ADP and inorganic phosphate because ATP formation requires energy to be made. Catabolism is a pathway, which breaks down a larger molecule into smaller ones. Glycolysis is an example of a catabolic pathway.
Compare your answer with the correct one above
Which of the following processes can take place in an anaerobic (without oxygen) environment?
I. Glycolysis
II. Citric acid cycle
III. Electron transport chain
Which of the following processes can take place in an anaerobic (without oxygen) environment?
I. Glycolysis
II. Citric acid cycle
III. Electron transport chain
In glycolysis, a glucose molecule is broken down into two pyruvate molecules with a net gain of 2 ATP. Oxygen is not needed for this process, making glycolysis both an aerobic and anaerobic process. The citric acid cycle does not directly require oxygen, however it does require by-products from the electron transport chain, which does require oxygen to be the final electron acceptor. The electron transport chain is an aerobic process, and because the citric acid cycle relies on electron transport chain by-products, it is an aerobic process as well.
In glycolysis, a glucose molecule is broken down into two pyruvate molecules with a net gain of 2 ATP. Oxygen is not needed for this process, making glycolysis both an aerobic and anaerobic process. The citric acid cycle does not directly require oxygen, however it does require by-products from the electron transport chain, which does require oxygen to be the final electron acceptor. The electron transport chain is an aerobic process, and because the citric acid cycle relies on electron transport chain by-products, it is an aerobic process as well.
Compare your answer with the correct one above
What are the products of the citric acid cycle?
What are the products of the citric acid cycle?
The citric acid cycle is the process by which acetyl-CoA (a two-carbon molecule) is completely broken down to carbon dioxide and energy. Acetyl-CoA loses its CoA and is attached to oxaloacetate (OAA) to produce citrate, which is converted to isocitrate. From there the following occurs:
- Isocitrate (6C) is converted to
-ketoglutarate (5C), 1 CO2, and 1 NADH
-ketoglutarate (5C) is converted to succinyl-CoA (4C), 1 CO2, and 1 NADH
- Succinyl-CoA (4C) is converted to succinate (4C) and 1 GTP (similar to ATP)
- Succinate (4C) is converted to fumarate (4C) and 1 FADH2
- Fumarate (4C) is converted to malate (4C)
- Malate (4C) is converted to OAA (4C) and 1 NADH
The net result is 3 NADH, 2 CO2, 1 FADH2, and 1 GTP (similar to ATP) per round. Since one glucose molecule produces two pyruvate molecules, which produce two Acetyl-CoA, the cycle occurs twice per glucose molecule.
The citric acid cycle is the process by which acetyl-CoA (a two-carbon molecule) is completely broken down to carbon dioxide and energy. Acetyl-CoA loses its CoA and is attached to oxaloacetate (OAA) to produce citrate, which is converted to isocitrate. From there the following occurs:
- Isocitrate (6C) is converted to
-ketoglutarate (5C), 1 CO2, and 1 NADH
-ketoglutarate (5C) is converted to succinyl-CoA (4C), 1 CO2, and 1 NADH
- Succinyl-CoA (4C) is converted to succinate (4C) and 1 GTP (similar to ATP)
- Succinate (4C) is converted to fumarate (4C) and 1 FADH2
- Fumarate (4C) is converted to malate (4C)
- Malate (4C) is converted to OAA (4C) and 1 NADH
The net result is 3 NADH, 2 CO2, 1 FADH2, and 1 GTP (similar to ATP) per round. Since one glucose molecule produces two pyruvate molecules, which produce two Acetyl-CoA, the cycle occurs twice per glucose molecule.
Compare your answer with the correct one above
Which step(s) of respiration can only be completed under aerobic conditions in eukaryotes?
Which step(s) of respiration can only be completed under aerobic conditions in eukaryotes?
Glycolysis is the first step in extracting energy from a sugar molecule. It converts a 6-carbon sugar molecule, such as glucose, into two three-carbon pyruvate molecules. It does not require oxygen, and is the first step in both aerobic and anaerobic respiration. Glycolysis produces two net ATP per sugar molecule.
If oxygen is present, the pyruvate molecules are broken down into acetyl-CoA and translocated into the mitochondria, where they undergo the Krebs cycle in the mitochondrial matrix. The Krebs cycle products NADH and FADH2, which are used to make ATP in the electron transport chain, which uses oxygen and hydrogen ions to create water. The electron transport chain creates an additional 34 ATP per original sugar molecule.
If oxygen is not present, pyruvate from glycolysis can be converted to lactic acid through fermentation, which regenerates the NAD+ required for more glycolysis cycles. The Krebs cycle and electron transport chain cannot function in anaerobic conditions (no oxygen).
Glycolysis is the first step in extracting energy from a sugar molecule. It converts a 6-carbon sugar molecule, such as glucose, into two three-carbon pyruvate molecules. It does not require oxygen, and is the first step in both aerobic and anaerobic respiration. Glycolysis produces two net ATP per sugar molecule.
If oxygen is present, the pyruvate molecules are broken down into acetyl-CoA and translocated into the mitochondria, where they undergo the Krebs cycle in the mitochondrial matrix. The Krebs cycle products NADH and FADH2, which are used to make ATP in the electron transport chain, which uses oxygen and hydrogen ions to create water. The electron transport chain creates an additional 34 ATP per original sugar molecule.
If oxygen is not present, pyruvate from glycolysis can be converted to lactic acid through fermentation, which regenerates the NAD+ required for more glycolysis cycles. The Krebs cycle and electron transport chain cannot function in anaerobic conditions (no oxygen).
Compare your answer with the correct one above
What is the name of the two-carbon molecule that enters the citric acid cycle?
What is the name of the two-carbon molecule that enters the citric acid cycle?
Prior to entering the citric acid cycle, pyruvate (a three-carbon molecule) is processed and converted into acetyl CoA (a two-carbon molecule).
This will then enter the citric acid cycle and combine with oxaloacetate (a four-carbon molecule) in order to make citrate, a six-carbon molecule.
Prior to entering the citric acid cycle, pyruvate (a three-carbon molecule) is processed and converted into acetyl CoA (a two-carbon molecule).
This will then enter the citric acid cycle and combine with oxaloacetate (a four-carbon molecule) in order to make citrate, a six-carbon molecule.
Compare your answer with the correct one above
Do plants undergo the process of cellular respiration?
Do plants undergo the process of cellular respiration?
All organisms, including plants, undergo cellular respiration. Some students get confused when discussing both cellular respiration and photosynthesis because they assume that plants photosynthesize and animals respire. One way to remember that all organisms respire is to understand what the two processes do. Photosynthesis is the process that creates glucose which is a form of energy storage. Cellular respiration is the process that breaks down glucose piece by piece into small packets of energy called ATP which is the usable form of energy in cells. When thinking about both processes, it becomes apparent why all organisms must undergo cellular respiration in order to convert stored energy to usable energy.
All organisms, including plants, undergo cellular respiration. Some students get confused when discussing both cellular respiration and photosynthesis because they assume that plants photosynthesize and animals respire. One way to remember that all organisms respire is to understand what the two processes do. Photosynthesis is the process that creates glucose which is a form of energy storage. Cellular respiration is the process that breaks down glucose piece by piece into small packets of energy called ATP which is the usable form of energy in cells. When thinking about both processes, it becomes apparent why all organisms must undergo cellular respiration in order to convert stored energy to usable energy.
Compare your answer with the correct one above
Which of the following is not a net product of the Krebs cycle?
Which of the following is not a net product of the Krebs cycle?
After 2 rounds of the Krebs cycle per glucose are completed,
, and
are produced. Water is produced during one step in the Krebs cycle, but it is consumed during three steps. Thus, water is a reactant, not a product of the Krebs cycle.
After 2 rounds of the Krebs cycle per glucose are completed, , and
are produced. Water is produced during one step in the Krebs cycle, but it is consumed during three steps. Thus, water is a reactant, not a product of the Krebs cycle.
Compare your answer with the correct one above
Where in the cell does the citric acid cycle take place?
Where in the cell does the citric acid cycle take place?
Although the citric acid cycle does synthesize two ATP per round, its main purpose is to produce NADH for the electron transport chain that makes ATP much more efficiently. Since the electron transport chain is located in the inner mitochondrial membrane, it is most efficient for the cell to produce the NADH in the mitochondrial matrix where it can be used immediately for its purpose, rather than having to use time and resources to transport it there.
Although the citric acid cycle does synthesize two ATP per round, its main purpose is to produce NADH for the electron transport chain that makes ATP much more efficiently. Since the electron transport chain is located in the inner mitochondrial membrane, it is most efficient for the cell to produce the NADH in the mitochondrial matrix where it can be used immediately for its purpose, rather than having to use time and resources to transport it there.
Compare your answer with the correct one above