Significance - AP Statistics
Card 1 of 168
A prominent football coach is being reviewed for his performance in the past season. To evaluate how well the coach has done, the team manager runs a statistical test comparing the coach to a sample of coaches in the league. If the test suggests that the coach outperformed other coaches when in fact he did not, and the manager then rejects the null hypothesis (that the coach did not outperform the other coaches), what kind of error is he committing?
A prominent football coach is being reviewed for his performance in the past season. To evaluate how well the coach has done, the team manager runs a statistical test comparing the coach to a sample of coaches in the league. If the test suggests that the coach outperformed other coaches when in fact he did not, and the manager then rejects the null hypothesis (that the coach did not outperform the other coaches), what kind of error is he committing?
Tap to reveal answer
A type I error occurs when one rejects a null hypothesis that is in fact true. The null hypothesis is that the coach does not outperform other coaches, and the test reccomends that we reject it even though it is true. Thus, a type I error has been committed.
A type I error occurs when one rejects a null hypothesis that is in fact true. The null hypothesis is that the coach does not outperform other coaches, and the test reccomends that we reject it even though it is true. Thus, a type I error has been committed.
← Didn't Know|Knew It →
If a hypothesis test uses a
confidence level, then what is its probability of Type I Error?
If a hypothesis test uses a confidence level, then what is its probability of Type I Error?
Tap to reveal answer
By definition, the probability of Type I Error is,

where,
represents Probability of Type I Error and
represents the confidence level.
Thus resulting in:

By definition, the probability of Type I Error is,
where,
represents Probability of Type I Error and
represents the confidence level.
Thus resulting in:
← Didn't Know|Knew It →
For significance tests, which of the following is an incorrect way to increase power (the probability of correctly rejecting the null hypothesis)?
For significance tests, which of the following is an incorrect way to increase power (the probability of correctly rejecting the null hypothesis)?
Tap to reveal answer
Recall that power is
. The probability of Type I and Type II errors will change inversely of each other as the probability of making a Type I error changes. If
increases, then
decreases, and as a result power will increase. So if
decreases,
would increase, and power would decrease; therefore decreasing
will not increase power.
Recall that power is . The probability of Type I and Type II errors will change inversely of each other as the probability of making a Type I error changes. If
increases, then
decreases, and as a result power will increase. So if
decreases,
would increase, and power would decrease; therefore decreasing
will not increase power.
← Didn't Know|Knew It →
In a recent athletic study, your lab partner told you that they rejected the null hypothesis that the fabric of running shoes has no effect on the wearer's running times.
If the null hypothesis was actually valid, what type of error was made?
In a recent athletic study, your lab partner told you that they rejected the null hypothesis that the fabric of running shoes has no effect on the wearer's running times.
If the null hypothesis was actually valid, what type of error was made?
Tap to reveal answer
A type I error occurs when the null hypothesis is valid but rejected.
A type II error occurs when the null hypothesis is false, but fails to be rejected.
Because the null hypothesis was true, but rejected, they made a Type I error.
A type I error occurs when the null hypothesis is valid but rejected.
A type II error occurs when the null hypothesis is false, but fails to be rejected.
Because the null hypothesis was true, but rejected, they made a Type I error.
← Didn't Know|Knew It →
In a recent academic study, your lab partner told you that they rejected the null hypothesis that the ionization of water has no effect on the rate of grass growth.
If the null hypothesis was actually valid, what type of error was made?
In a recent academic study, your lab partner told you that they rejected the null hypothesis that the ionization of water has no effect on the rate of grass growth.
If the null hypothesis was actually valid, what type of error was made?
Tap to reveal answer
A type I error occurs when the null hypothesis is valid but rejected.
A type II error occurs when the null hypothesis is false, but fails to be rejected.
Because the null hypothesis was true, but rejected, they made a Type I error.
A type I error occurs when the null hypothesis is valid but rejected.
A type II error occurs when the null hypothesis is false, but fails to be rejected.
Because the null hypothesis was true, but rejected, they made a Type I error.
← Didn't Know|Knew It →
A company claims that they have 12 ounces of potato chips in each of their bags of chips. A customer complaint is filed that they do not truly contain 12 ounces but actually contain less. A sampling test is conducted to see if the comapny measure is true or not. What would be an example of a Type I error?
A company claims that they have 12 ounces of potato chips in each of their bags of chips. A customer complaint is filed that they do not truly contain 12 ounces but actually contain less. A sampling test is conducted to see if the comapny measure is true or not. What would be an example of a Type I error?
Tap to reveal answer
The type I error is rejecting the null hypothesis when it is actually true. The null here is 12 ounces per bag so a type I error would be rejecting the company claim even though there are 12 ounces per bag.
The type I error is rejecting the null hypothesis when it is actually true. The null here is 12 ounces per bag so a type I error would be rejecting the company claim even though there are 12 ounces per bag.
← Didn't Know|Knew It →
In a recent academic study, your lab partner told you that they rejected the null hypothesis that the ionization of water has no effect on the rate of grass growth.
If the null hypothesis was actually valid, what type of error was made?
In a recent academic study, your lab partner told you that they rejected the null hypothesis that the ionization of water has no effect on the rate of grass growth.
If the null hypothesis was actually valid, what type of error was made?
Tap to reveal answer
A type I error occurs when the null hypothesis is valid but rejected.
A type II error occurs when the null hypothesis is false, but fails to be rejected.
Because the null hypothesis was true, but rejected, they made a Type I error.
A type I error occurs when the null hypothesis is valid but rejected.
A type II error occurs when the null hypothesis is false, but fails to be rejected.
Because the null hypothesis was true, but rejected, they made a Type I error.
← Didn't Know|Knew It →
A company claims that they have 12 ounces of potato chips in each of their bags of chips. A customer complaint is filed that they do not truly contain 12 ounces but actually contain less. A sampling test is conducted to see if the comapny measure is true or not. What would be an example of a Type I error?
A company claims that they have 12 ounces of potato chips in each of their bags of chips. A customer complaint is filed that they do not truly contain 12 ounces but actually contain less. A sampling test is conducted to see if the comapny measure is true or not. What would be an example of a Type I error?
Tap to reveal answer
The type I error is rejecting the null hypothesis when it is actually true. The null here is 12 ounces per bag so a type I error would be rejecting the company claim even though there are 12 ounces per bag.
The type I error is rejecting the null hypothesis when it is actually true. The null here is 12 ounces per bag so a type I error would be rejecting the company claim even though there are 12 ounces per bag.
← Didn't Know|Knew It →
A prominent football coach is being reviewed for his performance in the past season. To evaluate how well the coach has done, the team manager runs a statistical test comparing the coach to a sample of coaches in the league. If the test suggests that the coach outperformed other coaches when in fact he did not, and the manager then rejects the null hypothesis (that the coach did not outperform the other coaches), what kind of error is he committing?
A prominent football coach is being reviewed for his performance in the past season. To evaluate how well the coach has done, the team manager runs a statistical test comparing the coach to a sample of coaches in the league. If the test suggests that the coach outperformed other coaches when in fact he did not, and the manager then rejects the null hypothesis (that the coach did not outperform the other coaches), what kind of error is he committing?
Tap to reveal answer
A type I error occurs when one rejects a null hypothesis that is in fact true. The null hypothesis is that the coach does not outperform other coaches, and the test reccomends that we reject it even though it is true. Thus, a type I error has been committed.
A type I error occurs when one rejects a null hypothesis that is in fact true. The null hypothesis is that the coach does not outperform other coaches, and the test reccomends that we reject it even though it is true. Thus, a type I error has been committed.
← Didn't Know|Knew It →
If a hypothesis test uses a
confidence level, then what is its probability of Type I Error?
If a hypothesis test uses a confidence level, then what is its probability of Type I Error?
Tap to reveal answer
By definition, the probability of Type I Error is,

where,
represents Probability of Type I Error and
represents the confidence level.
Thus resulting in:

By definition, the probability of Type I Error is,
where,
represents Probability of Type I Error and
represents the confidence level.
Thus resulting in:
← Didn't Know|Knew It →
For significance tests, which of the following is an incorrect way to increase power (the probability of correctly rejecting the null hypothesis)?
For significance tests, which of the following is an incorrect way to increase power (the probability of correctly rejecting the null hypothesis)?
Tap to reveal answer
Recall that power is
. The probability of Type I and Type II errors will change inversely of each other as the probability of making a Type I error changes. If
increases, then
decreases, and as a result power will increase. So if
decreases,
would increase, and power would decrease; therefore decreasing
will not increase power.
Recall that power is . The probability of Type I and Type II errors will change inversely of each other as the probability of making a Type I error changes. If
increases, then
decreases, and as a result power will increase. So if
decreases,
would increase, and power would decrease; therefore decreasing
will not increase power.
← Didn't Know|Knew It →
In a recent athletic study, your lab partner told you that they rejected the null hypothesis that the fabric of running shoes has no effect on the wearer's running times.
If the null hypothesis was actually valid, what type of error was made?
In a recent athletic study, your lab partner told you that they rejected the null hypothesis that the fabric of running shoes has no effect on the wearer's running times.
If the null hypothesis was actually valid, what type of error was made?
Tap to reveal answer
A type I error occurs when the null hypothesis is valid but rejected.
A type II error occurs when the null hypothesis is false, but fails to be rejected.
Because the null hypothesis was true, but rejected, they made a Type I error.
A type I error occurs when the null hypothesis is valid but rejected.
A type II error occurs when the null hypothesis is false, but fails to be rejected.
Because the null hypothesis was true, but rejected, they made a Type I error.
← Didn't Know|Knew It →
Suppose you conduct a paired
-test to assess whether two group means significantly differ and find a
-score of 1.645. At what alpha level would this cause you to reject the null?
Suppose you conduct a paired -test to assess whether two group means significantly differ and find a
-score of 1.645. At what alpha level would this cause you to reject the null?
Tap to reveal answer
The critical value for a
-test with alpha set to 0.10 is 1.645.
The critical value for a -test with alpha set to 0.10 is 1.645.
← Didn't Know|Knew It →
Bob wants to statistically determine if the mean height of middle school boys is greater than the mean height of middle school girls. He wants to use a significance level of
What must be true for him to reject
.
is known.
Bob wants to statistically determine if the mean height of middle school boys is greater than the mean height of middle school girls. He wants to use a significance level of What must be true for him to reject
.
is known.
Tap to reveal answer
Step 1: We need to use a 2-sample z test because there are 2 samples, boys and girls. The population standard deviation,
, is known, so we can assume a standard distribution for each sample.
Step 2: This is a one-sided z test because the questions asks if the mean height of boys is greater than the mean height of girls.


Step 3: significance level, or alpha, is
. This means we need a p-value less than
in order to reject the null hypothesis
. A z-score greater than
would ensure a p-value less than
.

Step 1: We need to use a 2-sample z test because there are 2 samples, boys and girls. The population standard deviation, , is known, so we can assume a standard distribution for each sample.
Step 2: This is a one-sided z test because the questions asks if the mean height of boys is greater than the mean height of girls.
Step 3: significance level, or alpha, is . This means we need a p-value less than
in order to reject the null hypothesis
. A z-score greater than
would ensure a p-value less than
.

← Didn't Know|Knew It →
In a recent academic study, your lab partner told you that they rejected the null hypothesis that the ionization of water has no effect on the rate of grass growth.
If the null hypothesis was actually valid, what type of error was made?
In a recent academic study, your lab partner told you that they rejected the null hypothesis that the ionization of water has no effect on the rate of grass growth.
If the null hypothesis was actually valid, what type of error was made?
Tap to reveal answer
A type I error occurs when the null hypothesis is valid but rejected.
A type II error occurs when the null hypothesis is false, but fails to be rejected.
Because the null hypothesis was true, but rejected, they made a Type I error.
A type I error occurs when the null hypothesis is valid but rejected.
A type II error occurs when the null hypothesis is false, but fails to be rejected.
Because the null hypothesis was true, but rejected, they made a Type I error.
← Didn't Know|Knew It →
A company claims that they have 12 ounces of potato chips in each of their bags of chips. A customer complaint is filed that they do not truly contain 12 ounces but actually contain less. A sampling test is conducted to see if the comapny measure is true or not. What would be an example of a Type I error?
A company claims that they have 12 ounces of potato chips in each of their bags of chips. A customer complaint is filed that they do not truly contain 12 ounces but actually contain less. A sampling test is conducted to see if the comapny measure is true or not. What would be an example of a Type I error?
Tap to reveal answer
The type I error is rejecting the null hypothesis when it is actually true. The null here is 12 ounces per bag so a type I error would be rejecting the company claim even though there are 12 ounces per bag.
The type I error is rejecting the null hypothesis when it is actually true. The null here is 12 ounces per bag so a type I error would be rejecting the company claim even though there are 12 ounces per bag.
← Didn't Know|Knew It →
A prominent football coach is being reviewed for his performance in the past season. To evaluate how well the coach has done, the team manager runs a statistical test comparing the coach to a sample of coaches in the league. If the test suggests that the coach outperformed other coaches when in fact he did not, and the manager then rejects the null hypothesis (that the coach did not outperform the other coaches), what kind of error is he committing?
A prominent football coach is being reviewed for his performance in the past season. To evaluate how well the coach has done, the team manager runs a statistical test comparing the coach to a sample of coaches in the league. If the test suggests that the coach outperformed other coaches when in fact he did not, and the manager then rejects the null hypothesis (that the coach did not outperform the other coaches), what kind of error is he committing?
Tap to reveal answer
A type I error occurs when one rejects a null hypothesis that is in fact true. The null hypothesis is that the coach does not outperform other coaches, and the test reccomends that we reject it even though it is true. Thus, a type I error has been committed.
A type I error occurs when one rejects a null hypothesis that is in fact true. The null hypothesis is that the coach does not outperform other coaches, and the test reccomends that we reject it even though it is true. Thus, a type I error has been committed.
← Didn't Know|Knew It →
If a hypothesis test uses a
confidence level, then what is its probability of Type I Error?
If a hypothesis test uses a confidence level, then what is its probability of Type I Error?
Tap to reveal answer
By definition, the probability of Type I Error is,

where,
represents Probability of Type I Error and
represents the confidence level.
Thus resulting in:

By definition, the probability of Type I Error is,
where,
represents Probability of Type I Error and
represents the confidence level.
Thus resulting in:
← Didn't Know|Knew It →
For significance tests, which of the following is an incorrect way to increase power (the probability of correctly rejecting the null hypothesis)?
For significance tests, which of the following is an incorrect way to increase power (the probability of correctly rejecting the null hypothesis)?
Tap to reveal answer
Recall that power is
. The probability of Type I and Type II errors will change inversely of each other as the probability of making a Type I error changes. If
increases, then
decreases, and as a result power will increase. So if
decreases,
would increase, and power would decrease; therefore decreasing
will not increase power.
Recall that power is . The probability of Type I and Type II errors will change inversely of each other as the probability of making a Type I error changes. If
increases, then
decreases, and as a result power will increase. So if
decreases,
would increase, and power would decrease; therefore decreasing
will not increase power.
← Didn't Know|Knew It →
In a recent athletic study, your lab partner told you that they rejected the null hypothesis that the fabric of running shoes has no effect on the wearer's running times.
If the null hypothesis was actually valid, what type of error was made?
In a recent athletic study, your lab partner told you that they rejected the null hypothesis that the fabric of running shoes has no effect on the wearer's running times.
If the null hypothesis was actually valid, what type of error was made?
Tap to reveal answer
A type I error occurs when the null hypothesis is valid but rejected.
A type II error occurs when the null hypothesis is false, but fails to be rejected.
Because the null hypothesis was true, but rejected, they made a Type I error.
A type I error occurs when the null hypothesis is valid but rejected.
A type II error occurs when the null hypothesis is false, but fails to be rejected.
Because the null hypothesis was true, but rejected, they made a Type I error.
← Didn't Know|Knew It →