Parametric Form

Help Questions

AP Calculus BC › Parametric Form

Questions 1 - 10
1

Draw the graph of where .

R_sin2x

R_cos2x

R_sinx

R_sinx_1

Faker_cosx

Explanation

Because this function has a period of , the amplitude of the graph appear at a reference angle of (angles halfway between the angles of the axes).

Between and the radius approaches 1 from 0.

Between and , the radius approaches 0 from 1.

From to the radius approaches -1 from 0 and is drawn in the opposite quadrant, the fourth quadrant because it has a negative radius.

Between and , the radius approaches 0 from -1, and is also drawn in the fourth quadrant.

From and , the radius approaches 1 from 0. Between and , the radius approaches 0 from 1.

Then between and the radius approaches -1 from 0. Because it is a negative radius, it is drawn in the opposite quadrant, the second quadrant. Likewise, as the radius approaches 0 from -1. Between and , the curve is drawn in the second quadrant.

2

If and , what is in terms of (rectangular form)?

Explanation

Given and , we can find in terms of by isolating in both equations:

Since both of these transformations equal , we can set them equal to each other:

3

Draw the curve of from .

R2_sin2x

R2_cos2x

R_sinx

R_sinx_1

R_sin2x

Explanation

Taking the graph of , we only want the areas in the positive first quadrant because the radius is squared and cannot be negative.

This leaves us with the areas from to and to .

Then, when we take the square root of the radius, we get both a positive and negative answer with a maximum and minimum radius of .

To draw the graph, the radius is 0 at and traces to 1 at . As well, the negative part of the radius starts at 0 and traces to-1 in the opposite quadrant, the third quadrant.

From to , the curves are traced from 1 to 0 and -1 to 0 in the third quadrant.

Following this pattern, the graph is redrawn again from the areas included in to .

4

Rewrite as a Cartesian equation:

Explanation

So

or

We are restricting to values on , so is nonnegative; we choose

.

Also,

So

or

We are restricting to values on , so is nonpositive; we choose

or equivalently,

to make nonpositive.

Then,

and

5

Rewrite as a Cartesian equation:

Explanation

, so

This makes the Cartesian equation

.

6

Draw the graph of from .

R_sinx

R_cosx

Faker_cosx

R_sinx_1

R_sin2x

Explanation

Between and , the radius approaches from .

From to the radius goes from to .

Between and , the curve is redrawn in the opposite quadrant, the first quadrant as the radius approaches .

From and , the curve is redrawn in the second quadrant as the radius approaches from .

7

Graph where .

R2_cos2x

R_cos2x

R_sin2x

R_cosx

R2_sin2x

Explanation

Taking the graph of , we only want the areas in the positive first quadrant because the radius is squared and cannot be negative.

This leaves us with the areas from to , to , and to .

Then, when we take the square root of the radius, we get both a positive and negative answer with a maximum and minimum radius of .

To draw the graph, the radius is 1 at and traces to 0 at . As well, the negative part of the radius starts at -1 and traces to zero in the opposite quadrant, the third quadrant.

From to , the curves are traced from 0 to 1 and 0 to -1 in the fourth quadrant. Following this pattern, the graph is redrawn again from the areas included in to .

8

Given and , what is the arc length between ?

Explanation

In order to find the arc length, we must use the arc length formula for parametric curves:

.

Given and , we can use using the Power Rule

for all , to derive

and

.

Plugging these values and our boundary values for into the arc length equation, we get:

Now, using the Power Rule for Integrals

for all ,

we can determine that:

9

Find dy/dx at the point corresponding to the given value of the parameter without eliminating the parameter:

Explanation

The formula for dy/dx for parametric equations is given as:

From the problem statement:

If we plug these into the above equation we end up with:

If we plug in our given value for t, we end up with:

This is one of the answer choices.

10

Given and , what is the length of the arc from ?

Explanation

In order to find the arc length, we must use the arc length formula for parametric curves:

.

Given and , we can use using the Power Rule

for all , to derive

and

.

Plugging these values and our boundary values for into the arc length equation, we get:

Now, using the Power Rule for Integrals

for all ,

we can determine that:

Page 1 of 2
Return to subject