Respiratory System - AP Biology
Card 1 of 406
What is cell type forms the lining of the alveoli?
What is cell type forms the lining of the alveoli?
Tap to reveal answer
The alveoli are lined with a single layer of squamous epithelial cells, which allow for easy diffusion of vital gases. Basal and apical cells refer to cells located at the bottom and top of structures, respectively. Endothelial cells line the circulatory system and blood vessels. There is no formal class of cells known as "respiratory cells."
The alveoli are lined with a single layer of squamous epithelial cells, which allow for easy diffusion of vital gases. Basal and apical cells refer to cells located at the bottom and top of structures, respectively. Endothelial cells line the circulatory system and blood vessels. There is no formal class of cells known as "respiratory cells."
← Didn't Know|Knew It →
The function of an alveolus is most evident in the basic anatomy of which type of alveolar cell?
The function of an alveolus is most evident in the basic anatomy of which type of alveolar cell?
Tap to reveal answer
The vast majority of the surface area of an alveolus is made up of type 1 alveolar cells, which are squamous (flat), thin epithelial cells that allow rapid gas exchange between the air inside the alveoli and blood in the surrounding capillaries. The healthy adult human has millions of alveoli in his/her lungs, providing a huge total surface area across which gas can diffuse, letting oxygen into the bloodstream and carbon dioxide out.
The vast majority of the surface area of an alveolus is made up of type 1 alveolar cells, which are squamous (flat), thin epithelial cells that allow rapid gas exchange between the air inside the alveoli and blood in the surrounding capillaries. The healthy adult human has millions of alveoli in his/her lungs, providing a huge total surface area across which gas can diffuse, letting oxygen into the bloodstream and carbon dioxide out.
← Didn't Know|Knew It →
The alveoli of the human lungs cluster together in alveolar sacs. These clusters are commonly said to resemble clusters of grapes, as the nearly spherical alveoli appear to bud away from "stems" (alveolar ducts). Which response best explains the alveoli's spherical shape?
The alveoli of the human lungs cluster together in alveolar sacs. These clusters are commonly said to resemble clusters of grapes, as the nearly spherical alveoli appear to bud away from "stems" (alveolar ducts). Which response best explains the alveoli's spherical shape?
Tap to reveal answer
The spherical or grape-like shape of the alveoli allows for maximum contact between the alveoli and the capillaries that surround them. The alveoli are filled with air that has been taken into the lungs from the environment, so a high surface area allows for maximum contact between air from the environment and capillaries. Oxygen rapidly diffuses through the exceptionally thin alveolar walls to the capillaries, which carry hemoglobin-containing blood cells that bind to the oxygen and shuttle it around the body. Blood cells also release carbon dioxide into the alveoli and lungs, which is why this process is called gas exchange.
Capillaries are considerably smaller than alveoli; they surround the alveoli like a mesh, and are certainly not the cause of the alveoli's shape. Furthermore, though the cells of the alveoli do secrete extracellular matrix material, the cells affect the structure of the extracellular matrix, rather than the other way around. The shape of the alveoli is crucial to their function in gas exchange and cannot be considered an "accident," or the unexpected result of the shapes of other biological structures.
The spherical or grape-like shape of the alveoli allows for maximum contact between the alveoli and the capillaries that surround them. The alveoli are filled with air that has been taken into the lungs from the environment, so a high surface area allows for maximum contact between air from the environment and capillaries. Oxygen rapidly diffuses through the exceptionally thin alveolar walls to the capillaries, which carry hemoglobin-containing blood cells that bind to the oxygen and shuttle it around the body. Blood cells also release carbon dioxide into the alveoli and lungs, which is why this process is called gas exchange.
Capillaries are considerably smaller than alveoli; they surround the alveoli like a mesh, and are certainly not the cause of the alveoli's shape. Furthermore, though the cells of the alveoli do secrete extracellular matrix material, the cells affect the structure of the extracellular matrix, rather than the other way around. The shape of the alveoli is crucial to their function in gas exchange and cannot be considered an "accident," or the unexpected result of the shapes of other biological structures.
← Didn't Know|Knew It →
What type of epithelial tissue surrounds the alveoli?
What type of epithelial tissue surrounds the alveoli?
Tap to reveal answer
Alveoli are the site of gas exchange in the lungs. Because rapid diffusion of gases is necessary between the capillaries and the alveoli, a very thin epithelial layer is needed. As a result, alveoli use simple squamous epithelium so that gases can easily diffuses to and from the bloodstream.
Alveoli are the site of gas exchange in the lungs. Because rapid diffusion of gases is necessary between the capillaries and the alveoli, a very thin epithelial layer is needed. As a result, alveoli use simple squamous epithelium so that gases can easily diffuses to and from the bloodstream.
← Didn't Know|Knew It →
Which of the following structures is found within the lungs and helps facilitate gas exchange?
Which of the following structures is found within the lungs and helps facilitate gas exchange?
Tap to reveal answer
Alveoli are at the end of the respiratory pathway in humans, and act as a site of gas exchange (carbon dioxide and oxygen).
The path of air through the respiratory tract is: trachea, bronchi, bronchioles, alveoli. It is important to note that no gas exchange takes place in the bronchi, but does in the bronchioles, which are passageways that branch off from the main bronchi and eventually lead to alveolar ducts.
Micorvilli are found int he small intestine and act to increase the surface area in order to increase nutrient absorption. Secretory vesicles are used to transport proteins, hormones, and other molecules from a cell into the extracellular space.
Alveoli are at the end of the respiratory pathway in humans, and act as a site of gas exchange (carbon dioxide and oxygen).
The path of air through the respiratory tract is: trachea, bronchi, bronchioles, alveoli. It is important to note that no gas exchange takes place in the bronchi, but does in the bronchioles, which are passageways that branch off from the main bronchi and eventually lead to alveolar ducts.
Micorvilli are found int he small intestine and act to increase the surface area in order to increase nutrient absorption. Secretory vesicles are used to transport proteins, hormones, and other molecules from a cell into the extracellular space.
← Didn't Know|Knew It →
Which of these describes the gas exchange that occurs in the alveoli?
Which of these describes the gas exchange that occurs in the alveoli?
Tap to reveal answer
Diffusion is the spontaneous process by which substances move from areas of high to low concentration. During diffusion in alveoli, the high levels of
that are in the blood vessels surrounding the alveoli causes it to diffuse out of the blood vessels and into the alveoli where there are low levels of
(atmospheric air is about
). In the same way, high levels of oxygen in the alveoli diffuses into the area of low oxygen concentration within the blood vessels.
Diffusion is the spontaneous process by which substances move from areas of high to low concentration. During diffusion in alveoli, the high levels of that are in the blood vessels surrounding the alveoli causes it to diffuse out of the blood vessels and into the alveoli where there are low levels of
(atmospheric air is about
). In the same way, high levels of oxygen in the alveoli diffuses into the area of low oxygen concentration within the blood vessels.
← Didn't Know|Knew It →
Which best describes the structure of the alveoli?
Which best describes the structure of the alveoli?
Tap to reveal answer
The alveoli's structure maximizes the efficient transfer of gas from air to the capillaries and vice versa. Therefore the contact point between air and the capillaries needs to be as thin as possible so gas has only a short distance to diffuse. Alveoli are therefore made up of a thin layer of epithelial cells that are in direct contact with endothelial cells in the capillaries.
The alveoli's structure maximizes the efficient transfer of gas from air to the capillaries and vice versa. Therefore the contact point between air and the capillaries needs to be as thin as possible so gas has only a short distance to diffuse. Alveoli are therefore made up of a thin layer of epithelial cells that are in direct contact with endothelial cells in the capillaries.
← Didn't Know|Knew It →
How many lobes does the right lung have?
How many lobes does the right lung have?
Tap to reveal answer
The right lung contains three lobes: upper, middle, and lower. The left lungs contains two lobes: upper and lower. The left lung is designed to be smaller than the right in order to accommodate the heart, which is situated slightly to the left.
The right lung contains three lobes: upper, middle, and lower. The left lungs contains two lobes: upper and lower. The left lung is designed to be smaller than the right in order to accommodate the heart, which is situated slightly to the left.
← Didn't Know|Knew It →
Which of the following anatomical structures is found within the respiratory system?
Which of the following anatomical structures is found within the respiratory system?
Tap to reveal answer
The respiratory system allows air to enter the lungs from the outside environment and facilitates gas exchange with the blood. Air initially enters through the mouth or nose, passes through the pharynx and larynx, and enters the trachea. From the trachea, air travels through branching structures from bronchi, to bronchiole, to alveoli. Gas exchange occurs between the air in the alveoli and the capillaries surrounding the alveoli.
The respiratory system allows air to enter the lungs from the outside environment and facilitates gas exchange with the blood. Air initially enters through the mouth or nose, passes through the pharynx and larynx, and enters the trachea. From the trachea, air travels through branching structures from bronchi, to bronchiole, to alveoli. Gas exchange occurs between the air in the alveoli and the capillaries surrounding the alveoli.
← Didn't Know|Knew It →
What respiratory structure connects the nasal passages and the mouth?
What respiratory structure connects the nasal passages and the mouth?
Tap to reveal answer
The pharynx, located posteriorly (behind) the nasal passages and the mouth, is responsible for collecting the air that is taken in via the nose and mouth. The pharynx then passes the air to the larynx before it flows into the trachea. The trachea carries the air to the bronchioles, which end in terminal alveoli in the lungs.
The pharynx, located posteriorly (behind) the nasal passages and the mouth, is responsible for collecting the air that is taken in via the nose and mouth. The pharynx then passes the air to the larynx before it flows into the trachea. The trachea carries the air to the bronchioles, which end in terminal alveoli in the lungs.
← Didn't Know|Knew It →
Before it enters the lungs, air must pass through which of the following structures?
Before it enters the lungs, air must pass through which of the following structures?
Tap to reveal answer
After entering the nose and mouth, air is passed into the pharynx. It then travels to the larynx, which houses the vocal cords, before entering the trachea. The trachea transports the air into the thoracic cavity before branching into the primary bronchi. The right bronchus carries air to the right lung; the left bronchus carries air to the left lung. Of the given answer options, air only passes through the pharynx before entering the lungs.
Alveoli are found in the lungs and the primary site of gas exchange; however, the question specifies a structure before the air enters the lungs. The esophagus transports food, and is not involved in respiration. Nephrons are the function units of the excretory system, and are located in the kidneys.
After entering the nose and mouth, air is passed into the pharynx. It then travels to the larynx, which houses the vocal cords, before entering the trachea. The trachea transports the air into the thoracic cavity before branching into the primary bronchi. The right bronchus carries air to the right lung; the left bronchus carries air to the left lung. Of the given answer options, air only passes through the pharynx before entering the lungs.
Alveoli are found in the lungs and the primary site of gas exchange; however, the question specifies a structure before the air enters the lungs. The esophagus transports food, and is not involved in respiration. Nephrons are the function units of the excretory system, and are located in the kidneys.
← Didn't Know|Knew It →
Which of the following is the correct path of air through the respiratory system?
Which of the following is the correct path of air through the respiratory system?
Tap to reveal answer
Air enters the body through the nose or mouth, and is transferred to the pharynx (the upper portion of the throat located at the back of the mouth). The larynx is commonly called the "voice box," and is the lower portion of the throat connected to the pharynx. From there, air enters the trachea and flows into the chest. The trachea branches into two bronchi, which continue to branch and divide as the air is carried into the lungs.
Air enters the body through the nose or mouth, and is transferred to the pharynx (the upper portion of the throat located at the back of the mouth). The larynx is commonly called the "voice box," and is the lower portion of the throat connected to the pharynx. From there, air enters the trachea and flows into the chest. The trachea branches into two bronchi, which continue to branch and divide as the air is carried into the lungs.
← Didn't Know|Knew It →
What is the purpose of the nasal passage?
What is the purpose of the nasal passage?
Tap to reveal answer
The nasal passage's main function is to heat or cool air before it enters the lungs. The cilia, mucous and hair also help filter air since the respiratory system is very sensitive to allergens and infection. Also, the lungs need to be kept moist and lubricated, so dry air is damaging. No gas exchange occurs in the nasal passage, it is merely a conduction zone through which air must travel before it gets to the alveoli where gas exchange occurs with the pulmonary capillaries.
The nasal passage's main function is to heat or cool air before it enters the lungs. The cilia, mucous and hair also help filter air since the respiratory system is very sensitive to allergens and infection. Also, the lungs need to be kept moist and lubricated, so dry air is damaging. No gas exchange occurs in the nasal passage, it is merely a conduction zone through which air must travel before it gets to the alveoli where gas exchange occurs with the pulmonary capillaries.
← Didn't Know|Knew It →
The right lung has lobes, and the left lung has lobes.
The right lung has lobes, and the left lung has lobes.
Tap to reveal answer
The right lung has 3 lobes and left lung has only 2 lobes to allow room for the heart. The majority of the heart is on the left side of the body since the left ventricle is the largest and thickest-walled chamber of the heart.
The right lung has 3 lobes and left lung has only 2 lobes to allow room for the heart. The majority of the heart is on the left side of the body since the left ventricle is the largest and thickest-walled chamber of the heart.
← Didn't Know|Knew It →
Which portion of the respiratory system extends from the larynx to the bronchi?
Which portion of the respiratory system extends from the larynx to the bronchi?
Tap to reveal answer
Anterior to the esophagus, the trachea begins at the larynx (voice box) and extends down towards the lungs where it splits into the bronchi. The trachea is a conducting structure, meaning no gas exchange occurs in the trachea. Instead, it is held open by "C" shaped rings of cartilage to allow maximum airflow between the lungs and the air in the environment.
Anterior to the esophagus, the trachea begins at the larynx (voice box) and extends down towards the lungs where it splits into the bronchi. The trachea is a conducting structure, meaning no gas exchange occurs in the trachea. Instead, it is held open by "C" shaped rings of cartilage to allow maximum airflow between the lungs and the air in the environment.
← Didn't Know|Knew It →
What is the function of nasal cilia?
What is the function of nasal cilia?
Tap to reveal answer
The nose is the primary passageway of air into the lungs. Before air can safely enter the body, it must be brought to body temperature, moisturized and cleansed of any particles that could damage the respiratory system or cause infection. Mucous is produced by goblet cells. Olfaction is carried out by specialized neurons in the nose that bind to certain molecules and send information to the brain.
The nose is the primary passageway of air into the lungs. Before air can safely enter the body, it must be brought to body temperature, moisturized and cleansed of any particles that could damage the respiratory system or cause infection. Mucous is produced by goblet cells. Olfaction is carried out by specialized neurons in the nose that bind to certain molecules and send information to the brain.
← Didn't Know|Knew It →
Which of the given circulatory system elements has the highest partial pressure of oxygen?
Which of the given circulatory system elements has the highest partial pressure of oxygen?
Tap to reveal answer
The left atrium receives blood from the pulmonary veins, which carry blood that was freshly oxygenated from the lungs to the heart. The partial pressure of oxygen is always highest soon after oxygenation, thus blood returning from the lungs would have a high partial pressure.
The superior and inferior vena cavae return deoxygenated blood from the body to the heart, and would have very low oxygen partial pressures. The right atrium receives this deoxygenated blood from the vena cavae and transfers it to the right ventricle. From the ventricle, the deoxygenated blood is transported to the lungs via the pulmonary arteries. It only becomes oxygenated again after reaching the lungs, and then returns to the heart through the pulmonary veins.
The left atrium receives blood from the pulmonary veins, which carry blood that was freshly oxygenated from the lungs to the heart. The partial pressure of oxygen is always highest soon after oxygenation, thus blood returning from the lungs would have a high partial pressure.
The superior and inferior vena cavae return deoxygenated blood from the body to the heart, and would have very low oxygen partial pressures. The right atrium receives this deoxygenated blood from the vena cavae and transfers it to the right ventricle. From the ventricle, the deoxygenated blood is transported to the lungs via the pulmonary arteries. It only becomes oxygenated again after reaching the lungs, and then returns to the heart through the pulmonary veins.
← Didn't Know|Knew It →
Which statement describes the pressure in the lungs during exhalation?
Which statement describes the pressure in the lungs during exhalation?
Tap to reveal answer
This question requires a basic understanding of general chemistry and/or general physics. Remember that gas will only move from an area of high pressure to low pressure; thus, if air is moving out of the lungs, the pressure inside of the lungs must be greater than the pressure outside of the lungs. The point at which air does not move in or out of the lungs is a signal that the pressure of the gas inside of the lungs is equal to that of atmospheric pressure.
In a biological sense, remember that the diaphragm contracts to cause inhalation, which results from negative or decreased pressure in the lungs. When the diaphragm relaxes, the pressure in the lungs must increase again. The increase in pressure forces the air out of the lungs and back into the atmospheric environment.
This question requires a basic understanding of general chemistry and/or general physics. Remember that gas will only move from an area of high pressure to low pressure; thus, if air is moving out of the lungs, the pressure inside of the lungs must be greater than the pressure outside of the lungs. The point at which air does not move in or out of the lungs is a signal that the pressure of the gas inside of the lungs is equal to that of atmospheric pressure.
In a biological sense, remember that the diaphragm contracts to cause inhalation, which results from negative or decreased pressure in the lungs. When the diaphragm relaxes, the pressure in the lungs must increase again. The increase in pressure forces the air out of the lungs and back into the atmospheric environment.
← Didn't Know|Knew It →
What causes air to enter human lungs?
What causes air to enter human lungs?
Tap to reveal answer
Increasing the volume of a container (in this case, the lungs) while keeping the contents (air molecules) the same will decrease the pressure. If no barrier is present (as when holding your breath), pressure will tend to equalize between areas of differing pressure. In order to equalize the pressure, air molecules from outside the body rush into the expanded lungs. The concentration of oxygen does not impact inhalation, and cilia are not used to inhale.
Increasing the volume of a container (in this case, the lungs) while keeping the contents (air molecules) the same will decrease the pressure. If no barrier is present (as when holding your breath), pressure will tend to equalize between areas of differing pressure. In order to equalize the pressure, air molecules from outside the body rush into the expanded lungs. The concentration of oxygen does not impact inhalation, and cilia are not used to inhale.
← Didn't Know|Knew It →
To initiate inhalation, the diaphragm contracts, making the pressure inside the lungs .
To initiate inhalation, the diaphragm contracts, making the pressure inside the lungs .
Tap to reveal answer
Inhalation happens by making the pressure in the lungs lower relative to the pressure outside the body. When the diaphragm contracts, it increases the volume of the thoracic cavity. By Boyle's law, there is an inverse relationship between pressure and volume of a gas. Thus the pressure of the thoracic cavity decreases and since air will flow from high to low pressure, this pulls air into the lungs during inhalation.
Inhalation happens by making the pressure in the lungs lower relative to the pressure outside the body. When the diaphragm contracts, it increases the volume of the thoracic cavity. By Boyle's law, there is an inverse relationship between pressure and volume of a gas. Thus the pressure of the thoracic cavity decreases and since air will flow from high to low pressure, this pulls air into the lungs during inhalation.
← Didn't Know|Knew It →