Problem-Solving Questions

Help Questions

GMAT Quantitative › Problem-Solving Questions

Questions 1 - 10
1

Scott wants to invest $1000 for 1 year. At Bank A, his investment will collect 3% interest compounded daily while at Bank B, his investment will collect 3.50% interest compounded monthly. Which bank offers a better return? How much more will he receive by choosing that bank over the other?

Explanation

Calculate the total amount from each bank using the following formula:

Bank A:

Bank B:

2

What is the measure of one exterior angle of a regular twenty-four sided polygon?

Explanation

The sum of the measures of the exterior angles of any polygon, one at each vertex, is . Since a regular polygon with twenty-four sides has twenty-four congruent angles, and therefore, congruent exterior angles, just divide:

3

Define a function as follows:

Give the horizontal aysmptote of the graph of .

Explanation

The horizontal asymptote of an exponential function can be found by noting that a positive number raised to any power must be positive. Therefore, and for all real values of . The graph will never crosst the line of the equatin , so this is the horizontal asymptote.

4

What is the area of a circle with a diameter of ?

Explanation

The area of a circle is defined by , where is the radius of the circle. We are provided with the diameter of the circle, which is twice the length of .

If , then

Then, solving for :

5

A arc of a circle measures . Give the radius of this circle.

Explanation

A arc of a circle is of the circle. Since the length of this arc is , the circumference is this, or

The radius of a circle is its circumference divided by ; therefore, the radius is

6

Two circles are constructed; one is inscribed inside a given square, and the other is circumscribed about the same square.

The circumscribed circle has circumference . Give the area of the inscribed circle.

The correct answer is not among the other responses.

Explanation

Examine the diagram below, which shows the square, segments from its center to a vertex and the midpoint of a side, and the two circles.

Thingy

Note that the segment from the center of the square to the midpoint of a side is a radius of the inscribed circle, and the segment from the center to a vertex is a radius of the circumscribed circle. The two radii and half a side of the square form a 45-45-90 Triangle, so by the 45-45-90 Theorem, the radius of the inscribed circle is equal to that of the circumscribed circle divided by .

The inscribed circle has circumference , so its radius is

Divide this by to get the radius of the circumscribed circle:

The circumscribed circle has area

7

A given circle has an area of . What is the length of its diameter?

Not enough information provided

Explanation

The area of a circle is defined by the equation , where is the length of the circle's radius. The radius, in turn, is defined by the equation , where is the length of the circle's diameter.

Given , we can deduce that and therefore . Then, since , .

8

What percentage of a circle is a sector if the angle of the sector is ?

Explanation

The full measure of a circle is , so any sector will cover whatever fraction of the circle that its angle is of . We are given a sector with an angle of , so this sector will cover a percentage of the circle equal to whatever fraction is of . This gives us:

9

The chord of a central angle of a circle with area has what length?

Explanation

The radius of a circle with area can be found as follows:

The circle, the central angle, and the chord are shown below:

Chord

By way of the Isosceles Triangle Theorem, can be proved equilateral, so , the correct response.

10

On January 1, Gary borrows $10,000 to purchase an automobile at 12% annual interest, compounded quarterly beginning on April 1. He agrees to pay $800 per month on the last day of the month, beginning on January 31, over twelve months; his thirteenth payment, on the following January 31, will be the unpaid balance. How much will that thirteenth payment be?

Explanation

12% annual interest compounded quarterly is, effectively, 3% interest per quarter.

Over the course of one quarter, Gary pays off , and the remainder of the loan accruses 3% interest. This happens four times, so we will subtract $2,400 and subsequently multiply by 1.03 (adding 3% interest) four times.

First quarter:

Second quarter:

Third quarter:

Fourth quarter:

The thriteenth payment, with which Gary will pay off the loan, will be $913.16.

Page 1 of 100