Applying Exponents

Help Questions

Algebra II › Applying Exponents

Questions 1 - 10
1

The equation for radioactive decay is,

.

Where is the original amount of a radioactive substance, is the final amount, is the half life of the substance, and is time.

The half life of Carbon-14 is about years. If a fossile contains grams of Carbon-14 at time , how much Carbon-14 remains at time years?

None of the other answers.

Explanation

Using the equation for radioactive decay, we get:

.

2

The equation for radioactive decay is,

.

Where is the original amount of a radioactive substance, is the final amount, is the half life of the substance, and is time.

The half life of Carbon-14 is about years. If a fossile contains grams of Carbon-14 at time , how much Carbon-14 remains at time years?

None of the other answers.

Explanation

Using the equation for radioactive decay, we get:

.

3

Remember

If an account has a starting principle P = $5,000, an interest rate r = 12% or 0.12, compounded annually, how much money should there be after five years? Assume no money has been added or taken out of the account since it was opened.

Explanation

is the compound interest formula where

P = Initial deposit = 5000

r = Interest rate = 0.12

n = Number of times interest is compounded per year = 1

t = Number of years that have passed = 5

Round to the nearest cent or hundredth is .

4

A company is constructing a wall with 4-sides, all sides are of equal length.

Write an equation using exponents to calculate the area of the wall. Use as the length and height.

Explanation

The formula to find area is:

is correct.

In our case our length is equal to our width which is .

Substituting our values into our equation we get:

5

Remember

If an account has a starting principle P = $5,000, an interest rate r = 12% or 0.12, compounded annually, how much money should there be after five years? Assume no money has been added or taken out of the account since it was opened.

Explanation

is the compound interest formula where

P = Initial deposit = 5000

r = Interest rate = 0.12

n = Number of times interest is compounded per year = 1

t = Number of years that have passed = 5

Round to the nearest cent or hundredth is .

6

A company is constructing a wall with 4-sides, all sides are of equal length.

Write an equation using exponents to calculate the area of the wall. Use as the length and height.

Explanation

The formula to find area is:

is correct.

In our case our length is equal to our width which is .

Substituting our values into our equation we get:

7

The number of butterflies in an exhibit is decreasing at an exponential rate of decay. The number of butterflies is decreasing by every year. There are butterflies in the exhibit right now. How many butterflies will be in the exhibit in years?

Explanation

Because the butterflies are decreasing exponentially, we can use this equation

is the final value

is the original value

The decay for this problem is 5% or 0.05

The period of time is 7 years

Using this equation we can solve for

8

The number of butterflies in an exhibit is decreasing at an exponential rate of decay. The number of butterflies is decreasing by every year. There are butterflies in the exhibit right now. How many butterflies will be in the exhibit in years?

Explanation

Because the butterflies are decreasing exponentially, we can use this equation

is the final value

is the original value

The decay for this problem is 5% or 0.05

The period of time is 7 years

Using this equation we can solve for

9

The number of fish in an aquarium is decreasing with exponential decay. The population of fish is decreasing by each year. There are fish in the aquarium today. If the decay continues how many fish will be in the aquarium in years?

None of these answers are correct

Explanation

Every year the population of fish losses 7%. In other words, every year 93% of the fish remain from the previous year. Knowing this, we can use the original number of fish to find the number of fish for the next year. Since we want to know the number of fish 4 years from now, we multiply 1500 by 93% four times.

10

The number of fish in an aquarium is decreasing with exponential decay. The population of fish is decreasing by each year. There are fish in the aquarium today. If the decay continues how many fish will be in the aquarium in years?

None of these answers are correct

Explanation

Every year the population of fish losses 7%. In other words, every year 93% of the fish remain from the previous year. Knowing this, we can use the original number of fish to find the number of fish for the next year. Since we want to know the number of fish 4 years from now, we multiply 1500 by 93% four times.

Page 1 of 6