Operations with Polynomials

Help Questions

SAT Math › Operations with Polynomials

Questions 1 - 7
1

Divide:

Explanation

Divide termwise:

2

Which of the following is a prime factor of ?

None of the other responses gives a correct answer.

Explanation

can be seen to fit the pattern

:

where

can be factored as , so

, making this the difference of squares, so it can be factored as follows:

Therefore,

The polynomial has only two prime factors, each squared, neither of which appear among the choices.

3

Factor:

The polynomial is prime.

Explanation

can be rewritten as and is therefore the difference of two cubes. As such, it can be factored using the pattern

where .

4

Factor completely:

The polynomial is prime.

Explanation

Since the first term is a perfect cube, the factoring pattern we are looking to take advantage of is the difference of cubes pattern. However, 225 is not a perfect cube of an integer , so the factoring pattern cannot be applied. No other pattern fits, so the polynomial is a prime.

5

Factor completely:

The polynomial is prime.

Explanation

Since both terms are perfect cubes , the factoring pattern we are looking to take advantage of is the sum of cubes pattern. This pattern is

We substitute for and 8 for :

6

Subtract the expressions below.

None of the other answers are correct.

Explanation

Since we are only adding and subtracting (there is no multiplication or division), we can remove the parentheses.

Regroup the expression so that like variables are together. Remember to carry positive and negative signs.

For all fractional terms, find the least common multiple in order to add and subtract the fractions.

Combine like terms and simplify.

7

Divide by .

Explanation

First, set up the division as the following:

Look at the leading term in the divisor and in the dividend. Divide by gives ; therefore, put on the top:

Then take that and multiply it by the divisor, , to get . Place that under the division sign:

Subtract the dividend by that same and place the result at the bottom. The new result is , which is the new dividend.

Now, is the new leading term of the dividend. Dividing by gives 5. Therefore, put 5 on top:

Multiply that 5 by the divisor and place the result, , at the bottom:

Perform the usual subtraction:

Therefore the answer is with a remainder of , or .

Return to subject