How to add square roots - SAT Math
Card 0 of 40
Simplify in radical form:

Simplify in radical form:
To simplify, break down each square root into its component factors:



You can remove pairs of factors and bring them outside the square root sign. At this point, since each term shares
, you can add them together to yield the final answer:

To simplify, break down each square root into its component factors:
You can remove pairs of factors and bring them outside the square root sign. At this point, since each term shares , you can add them together to yield the final answer:
Compare your answer with the correct one above
Simplify: 
Simplify:
Take each fraction separately first:
(2√3)/(√2) = \[(2√3)/(√2)\] * \[(√2)/(√2)\] = (2 * √3 * √2)/(√2 * √2) = (2 * √6)/2 = √6
Similarly:
(4√2)/(√3) = \[(4√2)/(√3)\] * \[(√3)/(√3)\] = (4√6)/3 = (4/3)√6
Now, add them together:
√6 + (4/3)√6 = (3/3)√6 + (4/3)√6 = (7/3)√6
Take each fraction separately first:
(2√3)/(√2) = \[(2√3)/(√2)\] * \[(√2)/(√2)\] = (2 * √3 * √2)/(√2 * √2) = (2 * √6)/2 = √6
Similarly:
(4√2)/(√3) = \[(4√2)/(√3)\] * \[(√3)/(√3)\] = (4√6)/3 = (4/3)√6
Now, add them together:
√6 + (4/3)√6 = (3/3)√6 + (4/3)√6 = (7/3)√6
Compare your answer with the correct one above
If
what is
?
If what is
?
Square both sides:
x = (32)2 = 92 = 81
Square both sides:
x = (32)2 = 92 = 81
Compare your answer with the correct one above
Simplify the following expression: 
Simplify the following expression:
Begin by factoring out each of the radicals:

For the first two radicals, you can factor out a
or
:

The other root values cannot be simply broken down. Now, combine the factors with
:

This is your simplest form.
Begin by factoring out each of the radicals:
For the first two radicals, you can factor out a or
:
The other root values cannot be simply broken down. Now, combine the factors with :
This is your simplest form.
Compare your answer with the correct one above
Solve for
.
Note,
:

Solve for .
Note, :
Begin by getting your
terms onto the left side of the equation and your numeric values onto the right side of the equation:

Next, you can combine your radicals. You do this merely by subtracting their respective coefficients:

Now, square both sides:



Solve by dividing both sides by
:

Begin by getting your terms onto the left side of the equation and your numeric values onto the right side of the equation:
Next, you can combine your radicals. You do this merely by subtracting their respective coefficients:
Now, square both sides:
Solve by dividing both sides by :
Compare your answer with the correct one above
Simplify: 
Simplify:
Take each fraction separately first:
(2√3)/(√2) = \[(2√3)/(√2)\] * \[(√2)/(√2)\] = (2 * √3 * √2)/(√2 * √2) = (2 * √6)/2 = √6
Similarly:
(4√2)/(√3) = \[(4√2)/(√3)\] * \[(√3)/(√3)\] = (4√6)/3 = (4/3)√6
Now, add them together:
√6 + (4/3)√6 = (3/3)√6 + (4/3)√6 = (7/3)√6
Take each fraction separately first:
(2√3)/(√2) = \[(2√3)/(√2)\] * \[(√2)/(√2)\] = (2 * √3 * √2)/(√2 * √2) = (2 * √6)/2 = √6
Similarly:
(4√2)/(√3) = \[(4√2)/(√3)\] * \[(√3)/(√3)\] = (4√6)/3 = (4/3)√6
Now, add them together:
√6 + (4/3)√6 = (3/3)√6 + (4/3)√6 = (7/3)√6
Compare your answer with the correct one above
If
what is
?
If what is
?
Square both sides:
x = (32)2 = 92 = 81
Square both sides:
x = (32)2 = 92 = 81
Compare your answer with the correct one above
Simplify in radical form:

Simplify in radical form:
To simplify, break down each square root into its component factors:



You can remove pairs of factors and bring them outside the square root sign. At this point, since each term shares
, you can add them together to yield the final answer:

To simplify, break down each square root into its component factors:
You can remove pairs of factors and bring them outside the square root sign. At this point, since each term shares , you can add them together to yield the final answer:
Compare your answer with the correct one above
Simplify the following expression: 
Simplify the following expression:
Begin by factoring out each of the radicals:

For the first two radicals, you can factor out a
or
:

The other root values cannot be simply broken down. Now, combine the factors with
:

This is your simplest form.
Begin by factoring out each of the radicals:
For the first two radicals, you can factor out a or
:
The other root values cannot be simply broken down. Now, combine the factors with :
This is your simplest form.
Compare your answer with the correct one above
Solve for
.
Note,
:

Solve for .
Note, :
Begin by getting your
terms onto the left side of the equation and your numeric values onto the right side of the equation:

Next, you can combine your radicals. You do this merely by subtracting their respective coefficients:

Now, square both sides:



Solve by dividing both sides by
:

Begin by getting your terms onto the left side of the equation and your numeric values onto the right side of the equation:
Next, you can combine your radicals. You do this merely by subtracting their respective coefficients:
Now, square both sides:
Solve by dividing both sides by :
Compare your answer with the correct one above
Simplify: 
Simplify:
Take each fraction separately first:
(2√3)/(√2) = \[(2√3)/(√2)\] * \[(√2)/(√2)\] = (2 * √3 * √2)/(√2 * √2) = (2 * √6)/2 = √6
Similarly:
(4√2)/(√3) = \[(4√2)/(√3)\] * \[(√3)/(√3)\] = (4√6)/3 = (4/3)√6
Now, add them together:
√6 + (4/3)√6 = (3/3)√6 + (4/3)√6 = (7/3)√6
Take each fraction separately first:
(2√3)/(√2) = \[(2√3)/(√2)\] * \[(√2)/(√2)\] = (2 * √3 * √2)/(√2 * √2) = (2 * √6)/2 = √6
Similarly:
(4√2)/(√3) = \[(4√2)/(√3)\] * \[(√3)/(√3)\] = (4√6)/3 = (4/3)√6
Now, add them together:
√6 + (4/3)√6 = (3/3)√6 + (4/3)√6 = (7/3)√6
Compare your answer with the correct one above
If
what is
?
If what is
?
Square both sides:
x = (32)2 = 92 = 81
Square both sides:
x = (32)2 = 92 = 81
Compare your answer with the correct one above
Simplify in radical form:

Simplify in radical form:
To simplify, break down each square root into its component factors:



You can remove pairs of factors and bring them outside the square root sign. At this point, since each term shares
, you can add them together to yield the final answer:

To simplify, break down each square root into its component factors:
You can remove pairs of factors and bring them outside the square root sign. At this point, since each term shares , you can add them together to yield the final answer:
Compare your answer with the correct one above
Simplify the following expression: 
Simplify the following expression:
Begin by factoring out each of the radicals:

For the first two radicals, you can factor out a
or
:

The other root values cannot be simply broken down. Now, combine the factors with
:

This is your simplest form.
Begin by factoring out each of the radicals:
For the first two radicals, you can factor out a or
:
The other root values cannot be simply broken down. Now, combine the factors with :
This is your simplest form.
Compare your answer with the correct one above
Solve for
.
Note,
:

Solve for .
Note, :
Begin by getting your
terms onto the left side of the equation and your numeric values onto the right side of the equation:

Next, you can combine your radicals. You do this merely by subtracting their respective coefficients:

Now, square both sides:



Solve by dividing both sides by
:

Begin by getting your terms onto the left side of the equation and your numeric values onto the right side of the equation:
Next, you can combine your radicals. You do this merely by subtracting their respective coefficients:
Now, square both sides:
Solve by dividing both sides by :
Compare your answer with the correct one above
Simplify: 
Simplify:
Take each fraction separately first:
(2√3)/(√2) = \[(2√3)/(√2)\] * \[(√2)/(√2)\] = (2 * √3 * √2)/(√2 * √2) = (2 * √6)/2 = √6
Similarly:
(4√2)/(√3) = \[(4√2)/(√3)\] * \[(√3)/(√3)\] = (4√6)/3 = (4/3)√6
Now, add them together:
√6 + (4/3)√6 = (3/3)√6 + (4/3)√6 = (7/3)√6
Take each fraction separately first:
(2√3)/(√2) = \[(2√3)/(√2)\] * \[(√2)/(√2)\] = (2 * √3 * √2)/(√2 * √2) = (2 * √6)/2 = √6
Similarly:
(4√2)/(√3) = \[(4√2)/(√3)\] * \[(√3)/(√3)\] = (4√6)/3 = (4/3)√6
Now, add them together:
√6 + (4/3)√6 = (3/3)√6 + (4/3)√6 = (7/3)√6
Compare your answer with the correct one above
If
what is
?
If what is
?
Square both sides:
x = (32)2 = 92 = 81
Square both sides:
x = (32)2 = 92 = 81
Compare your answer with the correct one above
Simplify in radical form:

Simplify in radical form:
To simplify, break down each square root into its component factors:



You can remove pairs of factors and bring them outside the square root sign. At this point, since each term shares
, you can add them together to yield the final answer:

To simplify, break down each square root into its component factors:
You can remove pairs of factors and bring them outside the square root sign. At this point, since each term shares , you can add them together to yield the final answer:
Compare your answer with the correct one above
Simplify the following expression: 
Simplify the following expression:
Begin by factoring out each of the radicals:

For the first two radicals, you can factor out a
or
:

The other root values cannot be simply broken down. Now, combine the factors with
:

This is your simplest form.
Begin by factoring out each of the radicals:
For the first two radicals, you can factor out a or
:
The other root values cannot be simply broken down. Now, combine the factors with :
This is your simplest form.
Compare your answer with the correct one above
Solve for
.
Note,
:

Solve for .
Note, :
Begin by getting your
terms onto the left side of the equation and your numeric values onto the right side of the equation:

Next, you can combine your radicals. You do this merely by subtracting their respective coefficients:

Now, square both sides:



Solve by dividing both sides by
:

Begin by getting your terms onto the left side of the equation and your numeric values onto the right side of the equation:
Next, you can combine your radicals. You do this merely by subtracting their respective coefficients:
Now, square both sides:
Solve by dividing both sides by :
Compare your answer with the correct one above