Card 0 of 7
You look at a circular loop of wire such that the plane of the loop is perpendicular to your line of vision. The loop has a constant current that is running through it clockwise. What will happen if a magnetic field were to be activated that is pointing in your direction?
This question works with the concept of induction. Simply put, the current in a wire will adjust such as to oppose a change in magnetic field. The loop originally has a magnetic field pointing away from the observer. Therefore, with the external magnetic field suddenly activated in the opposite direction (towards the observer), the current in the loop will act to counteract this change and increase while remaining clockwise.
Compare your answer with the correct one above
You look at a circular loop of wire such that the plane of the loop is perpendicular to your line of vision. The loop has a constant current that is running through it clockwise. What will happen if a magnetic field were to be activated that is pointing in your direction?
This question works with the concept of induction. Simply put, the current in a wire will adjust such as to oppose a change in magnetic field. The loop originally has a magnetic field pointing away from the observer. Therefore, with the external magnetic field suddenly activated in the opposite direction (towards the observer), the current in the loop will act to counteract this change and increase while remaining clockwise.
Compare your answer with the correct one above
You look at a circular loop of wire such that the plane of the loop is perpendicular to your line of vision. The loop has a constant current that is running through it clockwise. What will happen if a magnetic field were to be activated that is pointing in your direction?
This question works with the concept of induction. Simply put, the current in a wire will adjust such as to oppose a change in magnetic field. The loop originally has a magnetic field pointing away from the observer. Therefore, with the external magnetic field suddenly activated in the opposite direction (towards the observer), the current in the loop will act to counteract this change and increase while remaining clockwise.
Compare your answer with the correct one above
You look at a circular loop of wire such that the plane of the loop is perpendicular to your line of vision. The loop has a constant current that is running through it clockwise. What will happen if a magnetic field were to be activated that is pointing in your direction?
This question works with the concept of induction. Simply put, the current in a wire will adjust such as to oppose a change in magnetic field. The loop originally has a magnetic field pointing away from the observer. Therefore, with the external magnetic field suddenly activated in the opposite direction (towards the observer), the current in the loop will act to counteract this change and increase while remaining clockwise.
Compare your answer with the correct one above
You look at a circular loop of wire such that the plane of the loop is perpendicular to your line of vision. The loop has a constant current that is running through it clockwise. What will happen if a magnetic field were to be activated that is pointing in your direction?
This question works with the concept of induction. Simply put, the current in a wire will adjust such as to oppose a change in magnetic field. The loop originally has a magnetic field pointing away from the observer. Therefore, with the external magnetic field suddenly activated in the opposite direction (towards the observer), the current in the loop will act to counteract this change and increase while remaining clockwise.
Compare your answer with the correct one above
You look at a circular loop of wire such that the plane of the loop is perpendicular to your line of vision. The loop has a constant current that is running through it clockwise. What will happen if a magnetic field were to be activated that is pointing in your direction?
This question works with the concept of induction. Simply put, the current in a wire will adjust such as to oppose a change in magnetic field. The loop originally has a magnetic field pointing away from the observer. Therefore, with the external magnetic field suddenly activated in the opposite direction (towards the observer), the current in the loop will act to counteract this change and increase while remaining clockwise.
Compare your answer with the correct one above
You look at a circular loop of wire such that the plane of the loop is perpendicular to your line of vision. The loop has a constant current that is running through it clockwise. What will happen if a magnetic field were to be activated that is pointing in your direction?
This question works with the concept of induction. Simply put, the current in a wire will adjust such as to oppose a change in magnetic field. The loop originally has a magnetic field pointing away from the observer. Therefore, with the external magnetic field suddenly activated in the opposite direction (towards the observer), the current in the loop will act to counteract this change and increase while remaining clockwise.
Compare your answer with the correct one above