Mitosis and Meiosis

Help Questions

MCAT Biology › Mitosis and Meiosis

Questions 1 - 10
1

During metaphase, the chromosomes of the cell are __________.

aligned at the midplane of the cell

separated at each end of the poles

beginning to shorten and thicken

duplicated

difficult to see

Explanation

During metaphase, chromosomes align along the metaphase plate, in preparation for anaphase. This phase of the cell cycle is highly visible as a distinct band of chromosomes lined up in the center of the cell.

2

Which of the following processes occur in meiosis but do not occur in mitosis?

I. Spindle formation

II. Separation of homologous chromosomes

III. Separation of sister chromatids

IV. Recombination

II and IV

I, II, III, and IV

II only

I, II, and III

Explanation

Mitosis and meiosis are similar processes that yield very different results. One of the major differences is that meiosis separates homologous chromosomes prior to separating sister chromatids. This is what leads to the reduction of ploidy. Both processes involve spindle formation (the microtubule apparatus that pulls the chromosomes/chromatids apart). Recombination is a phenomenon unique to meiosis that results in increasing genetic diversity.

3

Which of the following occurs in mitosis, but does not occur in meiosis?

None of these answers

Separation of sister chromatids

Separation of homologous chromosomes

Nuclear envelope breakdown

Explanation

The main differences between meiosis and mitosis are that, during meiosis I, there is recombination between homologous chromosomes and the separation of homologous chromosomes. During mitosis, homologous chromosomes are not separated, only the sister chromatids. Both processes involve the breakdown of the nuclear envelope, allowing DNA to enter the cytoplasm and align at the equatorial plate and both processes involve separation of sister chromatids.

Only meiosis involves separation of homologous chromosomes. Since the question asks for an event exclusive to mitosis, none of these answers are suitable.

4

When does genetic crossover occur during meiosis?

Prophase I

Telophase II

Metaphase I

Anaphase I

Explanation

This is a simple memorization problem. Crossover occurs when the nucleus decondenses. The chromosomes are able to crossover during prophase I when chromosome pairs are aligned next to one another. Crossover cannot occur later in meiosis, as the chromosomes have already been separated.

5

Meiosis is a form of cell division that occurs in special types of cells called germ cells. It is different from mitosis because it takes a diploid cell and splits it into four, nonidentical haploid cells. In males, these haploid cells are called sperm and in females they are called eggs or ova. Meiosis has two steps: meiosis I and meiosis II. Both steps have their corresponding prophase, metaphase, anaphase, and telophase. Meiosis I phases are similar to mitotic phases, with a few key differences. Meiosis II phases are exactly identical to the mitotic phases.

A student is observing a set of cells under the microscope. He takes notes but forgets to write the mitotic phase for each slide. His notes are as follows.

Cell A: Site of ribosome synthesis disappears

Cell B: The nuclear content spills out into the cytoplasm

Cell C: No sister chromatids are visible

What is the mitotic phase of each cell?

Cell A: Prophase

Cell B: Prophase

Cell C: Telophase

Cell A: Prophase

Cell B: Anaphase

Cell C: Telophase

Cell A: Anaphase

Cell B: Anaphase

Cell C: Metaphase

Cell A: Metaphase

Cell B: Prophase

Cell C: Metaphase

Explanation

There are four main phases in mitosis: prophase, metaphase, anaphase, and telophase. Prophase involves nuclear membrane breakdown, formation of mitotic spindle, and disappearance of nucleolus. Recall that nucleolus is the site of ribosome synthesis; therefore, cell A is in prophase. The question states that the nuclear contents are spilling out in Cell B. Nuclear membrane holds the contents of nucleus in place. During prophase, this nuclear membrane breaks down, causing the contents of the nucleus (like chromosomes) to spill out into the cytoplasm.

Metaphase involves the alignment of the chromosomes (with sister chromatids) along the equatorial line of the cell. In anaphase, the aligned chromosomes are pulled towards the opposite ends of the cell, causing the sister chromatids to separate. Finally, in telophase two distinct cell start appearing with chromosomes that have no sister chromatids; therefore, cell C must be in telophase.

Mitosis is immediately followed by cytokinesis, during which the cytoplasm is divided equally between the two daughter cells.

6

Cellular division is an essential part of the cell cycle. When a cell divides it passes genetic information to daughter cells. The amount of genetic information passed on to daughter cells depends on whether the cell undergoes mitosis or meiosis. Mitosis is the most common form of cell division. All somatic cells undergo mitosis, whereas only germ cells undergo meiosis. Meiosis is very important because it produces gametes (sperm and eggs) that are required for sexual reproduction. Human germ cells have 46 chromosomes (2n = 46) and undergo meiosis to produce four haploid daughter cells (gametes).

Meiosis is a form of __________ reproduction and mitosis is a form of __________ reproduction.

sexual . . . asexual

sexual . . . sexual

asexual . . . sexual

asexual . . . asexual

Explanation

The key difference between sexual and asexual reproduction is recombination. If a process involves shuffling of genetic material between chromosomes (recombination), then it is sexual reproduction. Recall that crossing over, a type of genetic recombination, occurs during prophase I of meiosis. This leads to the production of daughter cells that are distinct from the parents; therefore, meiosis is a form of sexual reproduction.

In mitosis there is no genetic recombination and the daughter cells are identical to the parent cells; therefore, mitosis is a form of asexual reproduction.

7

Mit

Which stage of mitosis is shown in the illustration?

Metaphase

Anaphase

Telophase

Prophase

Cytokinesis

Explanation

This cell is in metaphase. This can be determined because the chromosomes are lined up on in the middle. This is known as the metaphase plate. After alignment the microtubules attach, and the chromosomes are ready to be seperated, which is the next phase (anaphase).

8

Nuclear transport is a very important concept of study in modern cellular biology. Transport of proteins into the nucleus of an organism requires energy in the form of GTP, which is attached to a protein called Ras-related Nuclear protein (RAN).

RAN is a monomeric G protein found in both the cytosol as well as the nucleus and its phosphorylation state plays an important role in the movement of proteins into and out of the nucleus. Specifically, RAN-GTP and RAN-GDP binds to nuclear import and export receptors and carries them into or out of the nucleus. They also play a role in dropping off cargo that import and export receptors hold onto. RAN's functions are controlled by two other proteins: RAN guanine exchange factor (RAN-GEF) and RAN GTPase activating protein (GAP). RAN-GEF binds a GTP onto RAN, while RAN-GAP hydrolyzes GTP into GDP. As a result, there is a RAN-GTP and RAN-GDP concentration gradient that forms between the cytosol and nucleus.

During prophase, what most likely happens to the RAN-GTP and RAN-GDP concentration gradient?

The concentration gradient breaks down because the nuclear membrane breaks down

The concentration gradient breaks down because the cell no longer requires protein movement into or out of the nucleus

The concentration gradient strengthens because the cell requires more proteins to diffuse into the nucleus during mitosis

The concentration gradient strengthens because the nuclear envelope becomes even more impermeable

There is no change in the concentration gradient during prophase

Explanation

During mitosis, the nuclear envelope breaks down to allow the formation of chromosomes. Since all concentration gradients are dependent upon the impermeability of a membrane, when this envelope breaks down, the concentration gradient weakens and disappears.

9

Meiosis is a form of cell division that occurs in special types of cells called germ cells. It is different from mitosis because it takes a diploid cell and splits it into four, nonidentical haploid cells. In males, these haploid cells are called sperm and in females they are called eggs or ova. Meiosis has two steps: meiosis I and meiosis II. Both steps have their corresponding prophase, metaphase, anaphase, and telophase. Meiosis I phases are similar to mitotic phases, with a few key differences. Meiosis II phases are exactly identical to the mitotic phases.

Which of the following is true regarding meiosis and mitosis?

I. Prophase I of meiosis and prophase of mitosis both involve recombination

II. In humans, cells in metaphase of mitosis will have twice as many columns of chromosomes as cells in metaphase I

III. The daughter cells of mitosis have similar ploidy number as daughter cells of meiosis I

II only

I only

I and II

I and III

Explanation

Mitosis and meiosis are both processes that involve cell division. In mitosis, a diploid parent cell divides and gives rise to two identical, diploid daughter cells. In meiosis, a diploid parent cell divides and gives rise to four identical, haploid daughter cells. Meiosis is divided into meiosis I and meiosis II. Meiosis I is unique because its prophase (prophase I) involves exchange of genetic material between chromosomes. This process is called recombination. Meiosis II is similar to mitosis. Note that both meiosis I and II have prophase, metaphase, anaphase, and telophase.

Metaphase in both mitosis and meiosis involves the alignment of the cell’s nuclear material along the midline. In mitosis, sister chromatids line along the midline. This means that in humans there will be a total of 46 columns of chromosomes along the midline (46 chromosomes with their respective sister chromatids). In meiosis I, however, it is slightly different. Recall that prophase I involves tetrad formation. This means that homologous chromosomes (with their respective sister chromatids) pair up along the midline, reducing the amount of columns of chromosomes in metaphase I to half of metaphase in mitosis. This means that in humans there will be only 23 columns of chromosomes in metaphase I.

Ploidy number refers to the amount of homologous chromosomes present. In humans, there are two sets of homologous chromosomes; therefore, humans are diploid. As mentioned mitosis produces two identical, diploid daughter cells (each cell has homologous chromosomes). In meiosis I two identical, haploid daughter cells are produced. These daughter cells have 23 chromosomes with sister chromatids; however, they lack their homologous pair and are, therefore, haploid. These two daughter cells undergo meiosis II and produce the final products of meiosis, which are four haploid daughter cells. Remember that the daughter cells of meiosis II will not have a sister chromatid because the sister chromatids are pulled to opposite poles during anaphase II.

10

Meiosis is a form of cell division that occurs in special types of cells called germ cells. It is different from mitosis because it takes a diploid cell and splits it into four, nonidentical haploid cells. In males, these haploid cells are called sperm and in females they are called eggs or ova. Meiosis has two steps: meiosis I and meiosis II. Both steps have their corresponding prophase, metaphase, anaphase, and telophase. Meiosis I phases are similar to mitotic phases, with a few key differences. Meiosis II phases are exactly identical to the mitotic phases.

In humans, a cell in prophase has __________ chromosomes, in metaphase has __________ chromosomes, and in anaphase has __________ chromosomes.

. . . . . .

. . . . . .

. . . . . .

. . . . . .

Explanation

Humans are diploid organisms with a total of 46 chromosomes (2n = 46). They have 23 distinct chromosomes and each chromosome has a homologous chromosome, giving a total of 46 chromosomes. Upon completion of DNA replication in S phase, each chromosome gains an identical sister chromatid that is joined to the original chromosome at the centromere; however, this whole entity is still considered a single chromosome. When a cell enters prophase of mitosis, there are a total of 46 chromosomes, each with a sister chromatid. In metaphase, the cell still has 46 chromosomes and these chromosomes align along the midline of the cell. In anaphase, the sister chromatids get pulled apart to opposite ends; therefore, the sister chromatid separates from the chromosome and becomes its own chromosome. This means that in anaphase there are a total of 92 chromosomes in the cell.

These 92 chromosomes get pulled to opposite ends where 2 new daughter cells (with 46 chromosomes and no sister chromatids) are produced.

Page 1 of 3
Return to subject