GRE Quantitative Reasoning › Sequences & Series
Evaluate: . (Round to 4 places)
Step 1: Plug in values into the function and add up the fraction:
Step 2: Find the sum of the fractions....
We can convert the fractions to decimals:
Step 3: Round to places...
Find the radius of convergence for the power series
We can use the limit
to find the radius of convergence. We have
This means the radius of convergence is .
Evaluate: . (Round to 4 places)
Step 1: Plug in values into the function and add up the fraction:
Step 2: Find the sum of the fractions....
We can convert the fractions to decimals:
Step 3: Round to places...
Assuming that ,
. Using the ratio test, what can we say about the series:
We cannot conclude when we use the ratio test.
It is convergent.
As required by this question we will have to use the ratio test. if L<1 the series converges absolutely, L>1 the series diverges, and if L=1 the series could either converge or diverge.
To do so, we will need to compute : . In our case:
Therefore
.
We know that
This means that
Since L=1 by the ratio test, we can't conclude about the convergence of the series.
Find the radius of convergence for the power series
We can use the limit
to find the radius of convergence. We have
This means the radius of convergence is .
Evaluate: . (Round to 4 places)
Step 1: Plug in values into the function and add up the fraction:
Step 2: Find the sum of the fractions....
We can convert the fractions to decimals:
Step 3: Round to places...
Assuming that ,
. Using the ratio test, what can we say about the series:
We cannot conclude when we use the ratio test.
It is convergent.
As required by this question we will have to use the ratio test. if L<1 the series converges absolutely, L>1 the series diverges, and if L=1 the series could either converge or diverge.
To do so, we will need to compute : . In our case:
Therefore
.
We know that
This means that
Since L=1 by the ratio test, we can't conclude about the convergence of the series.
Assuming that ,
. Using the ratio test, what can we say about the series:
We cannot conclude when we use the ratio test.
It is convergent.
As required by this question we will have to use the ratio test. if L<1 the series converges absolutely, L>1 the series diverges, and if L=1 the series could either converge or diverge.
To do so, we will need to compute : . In our case:
Therefore
.
We know that
This means that
Since L=1 by the ratio test, we can't conclude about the convergence of the series.
Find the radius of convergence for the power series
We can use the limit
to find the radius of convergence. We have
This means the radius of convergence is .
If the first term of an arithmetic sequence is 2 and the third term is 8, find the th term.
Step 1: Find the difference between each term...
Subtract the first term from the third term...
There are two terms between first and third...Take the answer in step 1 and divide by 2 to get the difference between consecutive terms...
The common difference is .
Step 2: Find an equation that describes the sequence....
The equation is , where
represents how many terms I need to calculate and
is the first term...
Step 3: Plug in ...
To find n, we subtract the term that we want from the original term...
So, if we want the th term and we are given the first term...
Then
So,
The th term is
.