College Algebra › Polynomial Functions
Find the roots of the function:
Factor:
Double check by factoring:
Add together:
Therefore:
Find the roots of the function:
Factor:
Double check by factoring:
Add together:
Therefore:
Divide the trinomial below by .
We can accomplish this division by re-writing the problem as a fraction.
The denominator will distribute, allowing us to address each element separately.
Now we can cancel common factors to find our answer.
Divide the trinomial below by .
We can accomplish this division by re-writing the problem as a fraction.
The denominator will distribute, allowing us to address each element separately.
Now we can cancel common factors to find our answer.
Divide:
Divide the leading coefficients to get the first term of the quotient:
, the first term of the quotient
Multiply this term by the divisor, and subtract the product from the dividend:
Repeat these steps with the differences until the difference is an integer. As it turns out, we need to repeat only once:
, the second term of the quotient
, the remainder
Putting it all together, the quotient can be written as .
Divide:
Divide the leading coefficients to get the first term of the quotient:
, the first term of the quotient
Multiply this term by the divisor, and subtract the product from the dividend:
Repeat these steps with the differences until the difference is an integer. As it turns out, we need to repeat only once:
, the second term of the quotient
, the remainder
Putting it all together, the quotient can be written as .
Which of the following graphs matches the function ?
Start by visualizing the graph associated with the function :
Terms within the parentheses associated with the squared x-variable will shift the parabola horizontally, while terms outside of the parentheses will shift the parabola vertically. In the provided equation, 2 is located outside of the parentheses and is subtracted from the terms located within the parentheses; therefore, the parabola in the graph will shift down by 2 units. A simplified graph of looks like this:
Remember that there is also a term within the parentheses. Within the parentheses, 1 is subtracted from the x-variable; thus, the parabola in the graph will shift to the right by 1 unit. As a result, the following graph matches the given function :
If the function is depicted here, which answer choice graphs
?
The function shifts a function f(x)
units to the left. Conversely,
shifts a function f(x)
units to the right. In this question, we are translating the graph two units to the left.
To translate along the y-axis, we use the function or
.
If the function is depicted here, which answer choice graphs
?
The function shifts a function f(x)
units to the left. Conversely,
shifts a function f(x)
units to the right. In this question, we are translating the graph two units to the left.
To translate along the y-axis, we use the function or
.
Which of the following graphs matches the function ?
Start by visualizing the graph associated with the function :
Terms within the parentheses associated with the squared x-variable will shift the parabola horizontally, while terms outside of the parentheses will shift the parabola vertically. In the provided equation, 2 is located outside of the parentheses and is subtracted from the terms located within the parentheses; therefore, the parabola in the graph will shift down by 2 units. A simplified graph of looks like this:
Remember that there is also a term within the parentheses. Within the parentheses, 1 is subtracted from the x-variable; thus, the parabola in the graph will shift to the right by 1 unit. As a result, the following graph matches the given function :