AP Physics 2 › Snell's Law
Light travels from air to diamond
. If the angle of incidence is
, determine the angle of refraction.
None of these
Snell's Law:
Where
is the respective incident angle
is the respective velocity of the light
is the respective wavelength
is the respective index of refraction
Using the following version of Snell's law and solving for the angle of refraction:
Plugging in values:
Light in a vacuum hits the surface of an unknown material with an angle of incidence of . The angle of refraction is
. What is the index of refraction of the unknown material?
None of these
Snell's Law:
Where
is the respective incident angle
is the respective velocity of the light
is the respective wavelength
is the respective index of refraction
Using the following version of Snell's law and solving for :
Plugging in values
Light of wavelength goes from vacuum to an unknown liquid with an angle of incidence of
and has an angle of diffraction of
. Determine the index of refraction in the unknown liquid.
None of these
Using Snell's law:
Light in a vacuum hits the surface of an unknown material with an angle of incidence of . The angle of refraction is
. What is the index of refraction of the unknown material?
Snell's Law:
Where
is the respective incident angle
is the respective velocity of the light
is the respective wavelength
is the respective index of refraction
Use the following version of Snell's law:
Solving for
Plugging in values
Light travels from a vacuum to a material with
. What will be the velocity in the new medium?
Snell's Law:
Where
is the respective incident angle
is the respective velocity of the light
is the respective wavelength
is the respective index of refraction
Use Snell's law:
Solve for :
The velocity of light in a vacuum is
Plug in values:
Light travels from a vacuum, , to a material with
. What will be the velocity in the new medium?
None of these
Snell's law:
Where
is the respective incident angle
is the respective velocity of the light
is the respective wavelength
is the respective index of refraction
Use Snell's law
Solve for :
The velocity of light in a vacuum:
Plug in values:
Light in a medium with index of refraction arrives at a boundary with another medium (with index of refraction
) at an angle of
to the normal. The refracted light exits the boundary at an angle of
from the normal. What is
?
This is a direct application of snell's law.
This gives
A beam of light going through a medium with an index of refraction of 1.14 has an angle of incidence of with another medium. If the light wave is at a new angle of
, what is the index of refraction for the second medium?
There is not enough information to determine the index of refraction.
To find the index of refraction, we use Snell's Law:
We have values for ,
, and
, so now we just need to rearrange the equation to solve for
.
Now, we can just plug in our numbers.
Therefore, the index of refraction of the second material is 1.346.
A laser beam traveling from air to glass () at an angle
relative to normal. What is the angle of refraction for this scenario?
Snell's Law states:
. The
subscript stands for incident, while the
stands for refraction. Here, we want to solve for the refraction angle. Let's plug in numbers:
Light of wavelength goes from vacuum to an unknown liquid with an angle of incidence of
and has an angle of diffraction of
. Determine the wavelength in the unknown liquid.
None of these
Using Snell's law: