Algebra › Quadratic Equations
Find the solutions to the equation .
No solution
To factor the polynomial, we need the numbers that multiply to –12 and add to +1. This leads us to –3 and +4. We solve the polynomial by setting it equal to 0.
So either x = 3 or x = –4 will make the product equal to 0.
Find the solutions to the equation .
No solution
To factor the polynomial, we need the numbers that multiply to –12 and add to +1. This leads us to –3 and +4. We solve the polynomial by setting it equal to 0.
So either x = 3 or x = –4 will make the product equal to 0.
Solve for x.
This is a factoring problem, so we need to get all of the variables on one side and set the equation equal to zero. To do this we subtract 128 from both sides to get .
We then notice that all four numbers are divisible by four, so we can simplify the expression to .
Think of the equation in this format to help with the following explanation.
We must then factor to find the solutions for x. To do this we must make a factor tree of c (which is 32 in this case) to find the possible solutions. The possible numbers are 1 * 32, 2 * 16, and 4 * 8.
Since c is negative, we know that our factoring will produce a positive and negative number.
We then look at b to see if the greater number will be positive or negative. Since b is positive, we know that the greater number from our factoring tree will be positive.
We then use addition and subtraction with the factoring tree to find the numbers that add together to equal b. Remember that the greater number is positive and the lesser number is negative in this example.
Positive 8 and negative 4 equal b. We then plug our numbers into the factored form of .
We know that anything multiplied by 0 is equal to 0, so we plug in the numbers for x which make each equation equal to 0. In this case .
Solve for x.
This is a factoring problem, so we need to get all of the variables on one side and set the equation equal to zero. To do this we subtract 128 from both sides to get .
We then notice that all four numbers are divisible by four, so we can simplify the expression to .
Think of the equation in this format to help with the following explanation.
We must then factor to find the solutions for x. To do this we must make a factor tree of c (which is 32 in this case) to find the possible solutions. The possible numbers are 1 * 32, 2 * 16, and 4 * 8.
Since c is negative, we know that our factoring will produce a positive and negative number.
We then look at b to see if the greater number will be positive or negative. Since b is positive, we know that the greater number from our factoring tree will be positive.
We then use addition and subtraction with the factoring tree to find the numbers that add together to equal b. Remember that the greater number is positive and the lesser number is negative in this example.
Positive 8 and negative 4 equal b. We then plug our numbers into the factored form of .
We know that anything multiplied by 0 is equal to 0, so we plug in the numbers for x which make each equation equal to 0. In this case .
Find solutions to .
The quadratic can be solved as . Setting each factor to zero yields the answers.
Find all of the solutions to the following quadratic equation:
None of the above
This requires the use of the quadratic formula. Recall that:
for
.
For this problem, .
So,
.
.
Therefore, the two solutions are:
Find all of the solutions to the following quadratic equation:
None of the above
This requires the use of the quadratic formula. Recall that:
for
.
For this problem, .
So,
.
.
Therefore, the two solutions are:
Find solutions to .
The quadratic can be solved as . Setting each factor to zero yields the answers.
Find the roots of the following equation.
Use the quadratic formula to solve the equation.
Plug in these values and solve.
Find the roots of the following equation.
Use the quadratic formula to solve the equation.
Plug in these values and solve.