How to find research summary in earth and space sciences

Help Questions

ACT Science › How to find research summary in earth and space sciences

Questions 1 - 10
1

The origin of the universe has been a highly debated topic among physicists. In the middle of the twentieth century, there were two prevalent models regarding the origin of the universe. The first model, called the Big Bang Theory, suggests that the universe was spontaneously created approximately 14 billion years ago. The second model, called the Steady State Theory, suggests that the universe contains no beginning or end, is always expanding, and contains a constant density.

Initially, the Big Bang Theory was widely disregarded by physicists and astronomers. In fact, the name “Big Bang” was coined by Fred Hoyle, a supporter of the Steady State Theory, who used the term in a derogatory manner. The Big Bang Theory suggests that prior to the creation of matter, a physical object that occupies space and possesses mass, the universe was filled homogenously with high-energy density and very high temperature and pressure. The universe was rapidly expanding and cooling resulting in the creation of atoms. The initial atoms that were produced were much lighter than the atoms currently found on earth, the lightest of which are hydrogen, helium, and lithium. After this initial creation of the universe, it continued to expand. The Big Bang Theory is now the prevalent theory for the origin of the universe.

The Steady State Theory suggests that there is no start or end to the universe in time or space, yet the universe is always expanding. Furthermore, the Steady State Theory states that new stars and galaxies replace old stars and galaxies and the overall appearance of the universe does not change over time.

Two sources of evidence are used to support or refute the discussed hypotheses. The first piece of data is the presence of primordial gas clouds, pockets of the universe that contain gases lighter than those found in the current universe. The second piece of evidence is that other galaxies are “red shifted”. The term red-shift indicates that as objects move farther away, the light they emit changes wavelength and appears to be more red.

The Big Bang Theory states:

All of the other choices

The universe was created by the cooling of a hot, high energy mass

The universe is always expanding

The big bang produced gases with a lighter mass than those found on Earth

Explanation

The Big Bang Theory states that the universe containing mass was created around 14 billion years ago when the universe was in a hot, dense state that was full of energy. The universe was cooling and expanding resulting in the creation of atoms (and mass). The first gases created contained elements that are smaller than those found on earth. The universe continues to expand.

2

Scientists have long debated the origin of organic molecules on Earth. Organic molecules are those based on the atom carbon, which can form four distinct bonds in contrast to the fewer number allowed in most other non-metals. As a result of this property, carbon can give rise to the enormously complex molecular shapes necessary for life to arise.

Some scientists argue that organic matter was dissolved in water ice on comets, and brought to Earth early in its history. These comets crashed into the early Earth, and deposited carbon-based molecules in copious quantities to the Earth’s surface as their water melted.

In 2014, the first space probe landed on the comet 67P/Churyumov-Gerasimenko. Suppose that scientists find the following information from 5 distinct samples after landing on the comet. Each sample was taken at a single geographical location, but 5 meters deeper than the last. Sample 1 was taken at a depth of 1 meter below the surface.

Sample #Water Ice?Concentration of Organics
1NoN/A
2Yes1 mg/L
3NoN/A
4Yes4 mg/L
5Yes10 mg/L

These samples were compared to 5 similar samples from the surface of Mars. Scientists posited that this comparison would be meaningful because we know that life does not exist on Mars the same way that it does on Earth. Thus, they are comparing a known non-biological celestial body, Mars, with another celestial body, the comet, which may be seeding life on suitable plants.

Sample #Water Ice?Concentration of Organics
1NoN/A
2NoN/A
3NoN/A
4NoN/A
5Yes1 mg/L

Which of the following facts would be most supportive of the suggestion that comets seeded organic molecules on Earth before life first developed?

Comet strikes were very common early in the Earth's history, but have become less common.

Comet strikes were never common in the Earth's history

Comet strikes were very rare, but have been more common in more recent Earth history

Few comets contain organic molecules at such high concentrations as 67P/Churyumov-Gerasimenko.

Most organic molecules are vaporized before comets land on the Earth

Explanation

The concept of seeding organic molecules to help jump start the evolution of life on Earth demands that early comet strikes took place. Thus, the early, frequent collisions of organics-rich comets with the Earth would be most consistent with this hypothesis.

3

The origin of the universe has been a highly debated topic among physicists. In the middle of the twentieth century, there were two prevalent models regarding the origin of the universe. The first model, called the Big Bang Theory, suggests that the universe was spontaneously created approximately 14 billion years ago. The second model, called the Steady State Theory, suggests that the universe contains no beginning or end, is always expanding, and contains a constant density.

Initially, the Big Bang Theory was widely disregarded by physicists and astronomers. In fact, the name “Big Bang” was coined by Fred Hoyle, a supporter of the Steady State Theory, who used the term in a derogatory manner. The Big Bang Theory suggests that prior to the creation of matter, a physical object that occupies space and possesses mass, the universe was filled homogenously with high-energy density and very high temperature and pressure. The universe was rapidly expanding and cooling resulting in the creation of atoms. The initial atoms that were produced were much lighter than the atoms currently found on earth, the lightest of which are hydrogen, helium, and lithium. After this initial creation of the universe, it continued to expand. The Big Bang Theory is now the prevalent theory for the origin of the universe.

The Steady State Theory suggests that there is no start or end to the universe in time or space, yet the universe is always expanding. Furthermore, the Steady State Theory states that new stars and galaxies replace old stars and galaxies and the overall appearance of the universe does not change over time.

Two sources of evidence are used to support or refute the discussed hypotheses. The first piece of data is the presence of primordial gas clouds, pockets of the universe that contain gases lighter than those found in the current universe. The second piece of evidence is that other galaxies are “red shifted”. The term red-shift indicates that as objects move farther away, the light they emit changes wavelength and appears to be more red.

Which word is defined as an object that contains mass and occupies space?

Matter

Light

Energy

Universe

Explanation

The definition was provided in the text: The Big Bang Theory suggests that "prior to creation of matter, a physical object that occupies space and possesses mass . . ."

4

The origin of the universe has been a highly debated topic among physicists. In the middle of the twentieth century, there were two prevalent models regarding the origin of the universe. The first model, called the Big Bang Theory, suggests that the universe was spontaneously created approximately 14 billion years ago. The second model, called the Steady State Theory, suggests that the universe contains no beginning or end, is always expanding, and contains a constant density.

Initially, the Big Bang Theory was widely disregarded by physicists and astronomers. In fact, the name “Big Bang” was coined by Fred Hoyle, a supporter of the Steady State Theory, who used the term in a derogatory manner. The Big Bang Theory suggests that prior to the creation of matter, a physical object that occupies space and possesses mass, the universe was filled homogenously with high-energy density and very high temperature and pressure. The universe was rapidly expanding and cooling resulting in the creation of atoms. The initial atoms that were produced were much lighter than the atoms currently found on earth, the lightest of which are hydrogen, helium, and lithium. After this initial creation of the universe, it continued to expand. The Big Bang Theory is now the prevalent theory for the origin of the universe.

The Steady State Theory suggests that there is no start or end to the universe in time or space, yet the universe is always expanding. Furthermore, the Steady State Theory states that new stars and galaxies replace old stars and galaxies and the overall appearance of the universe does not change over time.

Two sources of evidence are used to support or refute the discussed hypotheses. The first piece of data is the presence of primordial gas clouds, pockets of the universe that contain gases lighter than those found in the current universe. The second piece of evidence is that other galaxies are “red shifted”. The term red-shift indicates that as objects move farther away, the light they emit changes wavelength and appears to be more red.

The Steady State Theory states:

The overall appearance of the universe does not change

The universe was created 14 billion years ago

The universe originated from light

All of the other choices

Explanation

The Steady State theory claims the the universe has always existed in time and space and that its overall appearance does not change. This indicates that things may be created and destroyed, but new and old galaxies will appear identical.

5

Adapted from "What is Ocean Acidification?" NOAA Pacific Marine Environmental Laboratory Carbon Program. NOAA. Web. 22 Apr. 2015. http://www.pmel.noaa.gov/co2/story/What+is+Ocean+Acidification%3F.

The Chemistry

When carbon dioxide is absorbed by seawater, chemical reactions occur that reduce seawater pH, carbonate ion concentration, and saturation states of biologically important calcium carbonate minerals. These chemical reactions are termed "ocean acidification" or "OA" for short. Calcium carbonate minerals are the building blocks for the skeletons and shells of many marine organisms. In areas where most life now congregates in the ocean, the seawater is supersaturated with respect to calcium carbonate minerals. This means there are abundant building blocks for calcifying organisms to build their skeletons and shells. However, continued ocean acidification is causing many parts of the ocean to become undersaturated with these minerals, which is likely to affect the ability of some organisms to produce and maintain their shells.

Since the beginning of the Industrial Revolution, the pH of surface ocean waters has fallen by 0.1 pH units. Since the pH scale, like the Richter scale, is logarithmic, this change represents approximately a 30 percent increase in acidity. Future predictions indicate that the oceans will continue to absorb carbon dioxide and become even more acidic. Estimates of future carbon dioxide levels, based on business as usual emission scenarios, indicate that by the end of this century the surface waters of the ocean could be nearly 150 percent more acidic, resulting in a pH that the oceans haven’t experienced for more than 20 million years.

The Biological Impacts

Ocean acidification is expected to impact ocean species to varying degrees. Photosynthetic algae and seagrasses may benefit from higher conditions in the ocean, as they require to live just like plants on land. On the other hand, studies have shown that a more acidic environment has a dramatic effect on some calcifying species, including oysters, clams, sea urchins, shallow water corals, deep sea corals, and calcareous plankton. When shelled organisms are at risk, the entire food web may also be at risk. Today, more than a billion people worldwide rely on food from the ocean as their primary source of protein. Many jobs and economies in the U.S. and around the world depend on the fish and shellfish in our oceans.

Ocean Acidification: An Emerging Global Problem

Ocean acidification is an emerging global problem. Over the last decade, there has been much focus in the ocean science community on studying the potential impacts of ocean acidification. Since sustained efforts to monitor ocean acidification worldwide are only beginning, it is currently impossible to predict exactly how ocean acidification impacts will cascade throughout the marine food chain and affect the overall structure of marine ecosystems. With the pace of ocean acidification accelerating, scientists, resource managers, and policymakers recognize the urgent need to strengthen the science as a basis for sound decision making and action.

Over time, if ocean acidification continues at the rate projected in the passage, what would you expect to happen to the concentration of calcium carbonate in the ocean?

Continued desaturation of calcium carbonate

Increasing saturation of calcium carbonate in the ocean

No change in calcium carbonate, but an increase in carbon dioxide in the ocean

A decrease in the total amount of carbon in the ocean

Explanation

The first paragraph of the passage states, "When carbon dioxide (CO2) is absorbed by seawater, chemical reactions occur that reduce seawater pH, carbonate ion concentration, and saturation states of biologically important calcium carbonate minerals." So, this tells readers that when is absorbed by seawater, the amount of calcium carbonate minerals in the ocean is reduced, or in other words, desaturated. The second paragraph of the passage states, "Future predictions indicate that the oceans will continue to absorb carbon dioxide and become even more acidic." So, putting these two statements together, we can see that future projections involve the ocean becoming more acidic, and when the ocean becomes acidic, the amount of calcium carbonate in the ocean is reduced. The only answer choice that fits this prediction is "continued desaturation of calcium carbonate."

6

Adapted from "What is Ocean Acidification?" NOAA Pacific Marine Environmental Laboratory Carbon Program. NOAA. Web. 22 Apr. 2015. http://www.pmel.noaa.gov/co2/story/What+is+Ocean+Acidification%3F.

The Chemistry

When carbon dioxide is absorbed by seawater, chemical reactions occur that reduce seawater pH, carbonate ion concentration, and saturation states of biologically important calcium carbonate minerals. These chemical reactions are termed "ocean acidification" or "OA" for short. Calcium carbonate minerals are the building blocks for the skeletons and shells of many marine organisms. In areas where most life now congregates in the ocean, the seawater is supersaturated with respect to calcium carbonate minerals. This means there are abundant building blocks for calcifying organisms to build their skeletons and shells. However, continued ocean acidification is causing many parts of the ocean to become undersaturated with these minerals, which is likely to affect the ability of some organisms to produce and maintain their shells.

Since the beginning of the Industrial Revolution, the pH of surface ocean waters has fallen by 0.1 pH units. Since the pH scale, like the Richter scale, is logarithmic, this change represents approximately a 30 percent increase in acidity. Future predictions indicate that the oceans will continue to absorb carbon dioxide and become even more acidic. Estimates of future carbon dioxide levels, based on business as usual emission scenarios, indicate that by the end of this century the surface waters of the ocean could be nearly 150 percent more acidic, resulting in a pH that the oceans haven’t experienced for more than 20 million years.

The Biological Impacts

Ocean acidification is expected to impact ocean species to varying degrees. Photosynthetic algae and seagrasses may benefit from higher conditions in the ocean, as they require to live just like plants on land. On the other hand, studies have shown that a more acidic environment has a dramatic effect on some calcifying species, including oysters, clams, sea urchins, shallow water corals, deep sea corals, and calcareous plankton. When shelled organisms are at risk, the entire food web may also be at risk. Today, more than a billion people worldwide rely on food from the ocean as their primary source of protein. Many jobs and economies in the U.S. and around the world depend on the fish and shellfish in our oceans.

Ocean Acidification: An Emerging Global Problem

Ocean acidification is an emerging global problem. Over the last decade, there has been much focus in the ocean science community on studying the potential impacts of ocean acidification. Since sustained efforts to monitor ocean acidification worldwide are only beginning, it is currently impossible to predict exactly how ocean acidification impacts will cascade throughout the marine food chain and affect the overall structure of marine ecosystems. With the pace of ocean acidification accelerating, scientists, resource managers, and policymakers recognize the urgent need to strengthen the science as a basis for sound decision making and action.

According to the passage, why would some species benefit from ocean acidification?

The increased prevalence of carbon dioxide is beneficial to those species

Ocean acidification will weaken prey fish, creating an abundance of food for predators.

The destruction of coral reefs by ocean acidification will concentrate populations so that fish no longer need to migrate to feed.

No species may benefit from ocean acidification

Explanation

At the beginning of the section titled "The Biological Impacts," the passage mentions photosyntheic organisms that may benefit from the increased levels of carbon dioxide: "Ocean acidification is expected to impact ocean species to varying degrees. Photosynthetic algae and seagrasses may benefit from higher conditions in the ocean, as they require to live just like plants on land." This tells readers that some species benefit from ocean acidification because they use carbon dioxide, and increased prevalence of carbon dioxide is thus beneficial to those species.

7

Displaying FotorPhoto.jpg

Above is the deer population of Routt County National Forest between 1905 and 2005. The First White-tail deer were introduced to the forest for hunting in 1905. They are not native to the area, though they thrived in the environment.

White tailed deer eat the seeds of coniferous trees, berries, and an assortment of other plants. They tend to roam in small family herds and stick to areas where water is abundant and is unlikely to freeze completely in the winter.

In 1995, an environmental scientist watched a small herd of deer for ten days, recording their movements and taking note of herd size and stopping place. Below is a chart of his results.

DayTravel distance (mi)Herd sizeStopping place
12113Bear Creek
21513Yampa Valley
51913Bear Creek
81110Gilpin Lake
102210Yampa Valley

What could be concluded about the larger population of white-tailed deer in Routt National Forest, given the data collected on a single herd?

White-tailed deer can be found almost everywhere in the forest.

There are no white-tailed deer in the North.

Hunters prefer elk to white-tailed deer.

White-tailed deer reproduce quickly.

Explanation

The population of deer in the forest is very large- several hundred thousand now populate the area. Also note that the movement of a single herd of deer is great; a few deer can travel more than twenty miles in a day, if they chose to. Given the travel distance of one herd and the size of the population, one could therefore conclude they have spread out throughout much of the forest. If the movement of one herd of about a dozen is so great, the movement of a population of several hundred thousand must be very great.

8

The cause of the extinction of dinosaurs 65 million years ago is currently debated. Some attribute the extinction to volcanic activity while others attribute it to asteroid or comet impact. Two scientists offer conflicting viewpoints on the most probable cause of the mass extinction.

Scientist A

The extinction of dinosaurs was most likely caused by the impact of an asteroid or large comet. Unusually high levels of the rare metal iridium (found in extraterrestrial material) have been discovered in a layer of clay deposited at just the time of the extinction. In addition, this layer of clay contained quartz grains with a crystal structure that has been distorted by exceedingly high pressures (almost certainly caused by an impact). This colossal impact brought about a period of severe cooling that affected dinosaur eggs rather than adult dinosaurs. Small reptiles could survive by protecting their minute eggs in a variety of ways. However, there was no way for dinosaurs to protect their large eggs against a quickly-changing climate.

Scientist B

The extinction of dinosaurs was most likely caused by a volcanic outburst. In general, volcanic eruptions can have potent effects on climate. In 1815 the volcano Tambora in Indonesia erupted, spreading a pall of dust around the globe that resulted in killing frosts around Europe. The much larger eruption that formed the Deccan basalts about 65 million years ago would have caused a deeper and more prolonged cooling that directly affected adult dinosaurs. The rare metal iridium has been found both in active volcanoes and in a layer of clay deposited around the time of the dinosaur extinction. Therefore the dinosaurs were most likely affected by a massive volcanic eruption.

Which of the following best explains why Scientist B mentions iridium?

Iridium has been discovered in volcanoes and in a relevant layer of clay

High levels of iridium led to a prolonged cooling

Iridium is found in asteroids and comets

Iridium was directly responsible for the extinction of dinosaurs

Explanation

Scientist B mentions iridium because the metal is found both in volcanoes and in the layer of clay, which supports the theory that a volcanic eruption resulted in the mass extinction. Only Scientist A discusses asteroids and comets. There is no evidence in the passage that iridium caused climate change or that iridium was directly responsible for the extinction.

9

Scientists have recorded data in Region A, Region B, Region C and Region D. The data collected include the average daily temperature, the annual rainfall for the past year and the number of fresh water reservoirs. The scientists want to perform an experiment on wild life migration patterns.

Act 3

In which region should the scientist perform their wildlife migration experiment?

Region B

Region A

Region C

Region D

Explanation

Wildlife on Earth needs a water supply. If the scientists want to notice migration patterns of wildlife, the scientists will want a region with abundant life. Region B has the largest number of fresh water reservoirs, which would lead to the conclusion that the largest amount of wildlife diversity in this region. Therefore the scientists should perform their experiment in Region B.

10

The origin of the universe has been a highly debated topic among physicists. In the middle of the twentieth century, there were two prevalent models regarding the origin of the universe. The first model, called the Big Bang Theory, suggests that the universe was spontaneously created approximately 14 billion years ago. The second model, called the Steady State Theory, suggests that the universe contains no beginning or end, is always expanding, and contains a constant density.

Initially, the Big Bang Theory was widely disregarded by physicists and astronomers. In fact, the name “Big Bang” was coined by Fred Hoyle, a supporter of the Steady State Theory, who used the term in a derogatory manner. The Big Bang Theory suggests that prior to the creation of matter, a physical object that occupies space and possesses mass, the universe was filled homogenously with high-energy density and very high temperature and pressure. The universe was rapidly expanding and cooling resulting in the creation of atoms. The initial atoms that were produced were much lighter than the atoms currently found on earth, the lightest of which are hydrogen, helium, and lithium. After this initial creation of the universe, it continued to expand. The Big Bang Theory is now the prevalent theory for the origin of the universe.

The Steady State Theory suggests that there is no start or end to the universe in time or space, yet the universe is always expanding. Furthermore, the Steady State Theory states that new stars and galaxies replace old stars and galaxies and the overall appearance of the universe does not change over time.

Two sources of evidence are used to support or refute the discussed hypotheses. The first piece of data is the presence of primordial gas clouds, pockets of the universe that contain gases lighter than those found in the current universe. The second piece of evidence is that other galaxies are “red shifted”. The term red-shift indicates that as objects move farther away, the light they emit changes wavelength and appears to be more red.

A primordial gas has less mass than ________.

Hydrogen

An atom

Energy

Light

Explanation

The primoridal gases at the creation of the universe contained less mass than the elements on earth today. Hydrogen is the smallest element, therefore, primordial gases must comprise less mass than hydrogen. Atoms can vary in size and mass based on the type. Energy and light do not contain mass.

Page 1 of 5
Return to subject