Phases and Properties of Matter

Help Questions

Physical Chemistry › Phases and Properties of Matter

Questions 1 - 10
1

Which of the following is not an intensive property?

Volume

Temperature

Density

Melting point

Pressure

Explanation

Intensive properties are not dependent on the amount of substance. Melting point, pressure, temperature, and density are some examples of intensive properties. Therefore, volume of a substance is not an example of an intensive property, rather, it is an extensive property which depends on the amount of substance. Some other examples of extensive properties include weight, energy, and electric charge.

2

Which of the following is not an intensive property?

Volume

Temperature

Density

Melting point

Pressure

Explanation

Intensive properties are not dependent on the amount of substance. Melting point, pressure, temperature, and density are some examples of intensive properties. Therefore, volume of a substance is not an example of an intensive property, rather, it is an extensive property which depends on the amount of substance. Some other examples of extensive properties include weight, energy, and electric charge.

3

Which of the following is not an intensive property?

Volume

Temperature

Density

Melting point

Pressure

Explanation

Intensive properties are not dependent on the amount of substance. Melting point, pressure, temperature, and density are some examples of intensive properties. Therefore, volume of a substance is not an example of an intensive property, rather, it is an extensive property which depends on the amount of substance. Some other examples of extensive properties include weight, energy, and electric charge.

4

You freeze a sample of nitrogen. Compared to the reactant, the end product has __________ density and __________ mass.

a higher . . . the same

a higher . . . a higher

a lower . . . the same

the same . . . the same

Explanation

Freezing the is process of converting a liquid to a solid. This question is asking about the freezing process of liquid nitrogen to solid nitrogen; therefore, the end product of the reaction is solid nitrogen. Recall that solids are more tightly packed. This means that the volume taken up by the molecules in solid is lower than in liquid; therefore, solids generally have a lower volume. Mass, on the other hand, depends on the number of molecules present. Phase changes do not alter the amount of molecules present. For example, the end product in this question (solid nitrogen) will have the same amount of molecules as its liquid counterpart; therefore, the mass doesn’t change when the phase changes.

Density is defined as follows.

Since its volume decreases and the mass stays the same, a solid will have a lower density than liquid. Note that water is an exception to this general rule, as solid ice has a lower density (higher volume) than the same mass of liquid water. This is due to the arrangement of its hydrogen bonds throughout its crystalline structure.

5

You freeze a sample of nitrogen. Compared to the reactant, the end product has __________ density and __________ mass.

a higher . . . the same

a higher . . . a higher

a lower . . . the same

the same . . . the same

Explanation

Freezing the is process of converting a liquid to a solid. This question is asking about the freezing process of liquid nitrogen to solid nitrogen; therefore, the end product of the reaction is solid nitrogen. Recall that solids are more tightly packed. This means that the volume taken up by the molecules in solid is lower than in liquid; therefore, solids generally have a lower volume. Mass, on the other hand, depends on the number of molecules present. Phase changes do not alter the amount of molecules present. For example, the end product in this question (solid nitrogen) will have the same amount of molecules as its liquid counterpart; therefore, the mass doesn’t change when the phase changes.

Density is defined as follows.

Since its volume decreases and the mass stays the same, a solid will have a lower density than liquid. Note that water is an exception to this general rule, as solid ice has a lower density (higher volume) than the same mass of liquid water. This is due to the arrangement of its hydrogen bonds throughout its crystalline structure.

6

You freeze a sample of nitrogen. Compared to the reactant, the end product has __________ density and __________ mass.

a higher . . . the same

a higher . . . a higher

a lower . . . the same

the same . . . the same

Explanation

Freezing the is process of converting a liquid to a solid. This question is asking about the freezing process of liquid nitrogen to solid nitrogen; therefore, the end product of the reaction is solid nitrogen. Recall that solids are more tightly packed. This means that the volume taken up by the molecules in solid is lower than in liquid; therefore, solids generally have a lower volume. Mass, on the other hand, depends on the number of molecules present. Phase changes do not alter the amount of molecules present. For example, the end product in this question (solid nitrogen) will have the same amount of molecules as its liquid counterpart; therefore, the mass doesn’t change when the phase changes.

Density is defined as follows.

Since its volume decreases and the mass stays the same, a solid will have a lower density than liquid. Note that water is an exception to this general rule, as solid ice has a lower density (higher volume) than the same mass of liquid water. This is due to the arrangement of its hydrogen bonds throughout its crystalline structure.

7

An unknown molecule (molecule A), in its solid phase, is found to have a density of . Eight grams of this molecule is added to a cubic container with length of . The container is then heated until all of the solid has melted. What can you conclude from the given information?

Liquid will overflow

No liquid will overflow

Solid will not fit in the container

The container will be about halfway full with liquid

Explanation

The dimensions of the cubic container are by by (cube has same length, height, and width); therefore, the volume of the cubic container is

Recall that is the same as ; therefore, the container can contain of volume. This means that all of the solid will fit into the container. Upon melting, the solid will expand and the volume will increase (as it becomes liquid). This means that the volume of the container will not be sufficient for the liquid and, consequently, lead to an overflow of the liquid.

8

An unknown molecule (molecule A), in its solid phase, is found to have a density of . Eight grams of this molecule is added to a cubic container with length of . The container is then heated until all of the solid has melted. What can you conclude from the given information?

Liquid will overflow

No liquid will overflow

Solid will not fit in the container

The container will be about halfway full with liquid

Explanation

The dimensions of the cubic container are by by (cube has same length, height, and width); therefore, the volume of the cubic container is

Recall that is the same as ; therefore, the container can contain of volume. This means that all of the solid will fit into the container. Upon melting, the solid will expand and the volume will increase (as it becomes liquid). This means that the volume of the container will not be sufficient for the liquid and, consequently, lead to an overflow of the liquid.

9

An unknown molecule (molecule A), in its solid phase, is found to have a density of . Eight grams of this molecule is added to a cubic container with length of . The container is then heated until all of the solid has melted. What can you conclude from the given information?

Liquid will overflow

No liquid will overflow

Solid will not fit in the container

The container will be about halfway full with liquid

Explanation

The dimensions of the cubic container are by by (cube has same length, height, and width); therefore, the volume of the cubic container is

Recall that is the same as ; therefore, the container can contain of volume. This means that all of the solid will fit into the container. Upon melting, the solid will expand and the volume will increase (as it becomes liquid). This means that the volume of the container will not be sufficient for the liquid and, consequently, lead to an overflow of the liquid.

10

An unknown gas is being analyzed in lab. You place of this gas in a container at . You observe that the pressure and volume of the gas is and , respectively. What is the identity of the gas? Assume the gas behaves ideally.

Oxygen

Nitrogen

Argon

Chlorine

Explanation

To solve this question we need to use the ideal gas law equation:

Above, is pressure in , is volume in liters, is moles, is , and is temperature in Kelvins. The question gives us pressure, volume, and temperature; therefore, we can solve for . First, we need to convert temperature from Celsius to Kelvins.

Rearrange the ideal gas law and solve for :


The question states that you place one gram of gas in the container. Since we know the moles, we can solve for the molecular weight of the gas and figure out its identity from the molecular weight.

The molecular weight of oxygen gas, is ; therefore, the unknown gas must be oxygen.

Page 1 of 10