# Reduced Radical Form

Radicals can be a little daunting, but there are a few easy tricks that can make problems involving radicals much easier to solve. One trick is to change radicals into their reduced radical form. This can be useful in a range of different situations. But how does it work? Let's find out:

## What is reduced radical form?

If we see an expression with a radical sign $\left(\sqrt{}\right)$ , we know it is in reduced radical form if the number underneath the radical sign does not contain any perfect squares as factors. Remember that we call the number under the radical sign the "radicand." The same applies to cubic roots, but the radicand in this case cannot contain any perfect cubes as factors.

Remember that perfect squares are numbers that are the squares of other numbers. Examples include ${2}^{2}=4$ , ${3}^{2}=9$ , etc. The same general logic applies to perfect cubes, such as ${3}^{3}=27$ .

Changing radicals into reduced radical form can help us simplify square roots, and it may be very useful in a range of different situations.

## The product property of square roots

But how do we find out whether a radicand "contains" any perfect squares?

Easy: We use the product property of square roots. This property states that:

For all real numbers a and b, $\sqrt{ab}=\sqrt{a}\times \sqrt{b}$ .

## Reduced radical form: practice questions

a. What if we wanted to simplify $\sqrt{18}$ ?

First, break the radicand into perfect squares and other factors:

$\sqrt{18}=\sqrt{9\times 2}or\sqrt{9}\times \sqrt{2}$

We can simplify this as $3\sqrt{2}$ .

b. What if we wanted to simplify $\sqrt{252}$ ?

Break the radicand into perfect squares and other factors:

$\sqrt{252}=\sqrt{36\times 7}$ or $\sqrt{36}\times \sqrt{7}$

We can simplify this as:

$6\sqrt{7}$

## Topics related to the Reduced Radical Form

Graphing Quadratic Equations Using Factoring

Writing Number Patterns in Function Notation

## Flashcards covering the Reduced Radical Form

## Practice tests covering the Reduced Radical Form

College Algebra Diagnostic Tests

## Help your student tackle reduce radical forms

Tutoring is one of the best ways to review and solidify complex classroom concepts such as reduced radical forms. During these 1-on-1 sessions, students can take all the time they need to ask questions, practice their skills and gain confidence before moving on to the next topic. Often, students feel left behind due to the pace of their teacher. Tutors can make math fun with examples geared towards your student's unique interests, such as hockey or dance. Reach out to Varsity Tutors today, and we'll match your student with a suitable tutor.

- API - Associate in Personal Insurance Courses & Classes
- CST - California Standards Test Test Prep
- Series 24 Courses & Classes
- Quicken Tutors
- CCA-N - Citrix Certified Associate - Networking Tutors
- CompTIA Security+ Training
- Korean Lessons
- MOS - Microsoft Office Specialist Tutors
- CAIA Courses & Classes
- IB History SL Tutors
- GRE Subject Test in Mathematics Courses & Classes
- CCNA Training
- Rhetoric Tutors
- Urban Economics Tutors
- Indiana Bar Exam Test Prep
- CCP-V - Citrix Certified Professional - Virtualization Tutors
- CCNA Cloud - Cisco Certified Network Associate-Cloud Courses & Classes
- CLEP French Test Prep
- Elementary Statistics Tutors
- Grant Writing Tutors