# High School Math : Parallel Lines

## Example Questions

← Previous 1

### Example Question #1 : Parallel Lines

Which of these lines is parallel to ?

Explanation:

Lines are parallel if they have the same slope. In standard form, is the slope.

For our given equation, the slope is . Only has the same slope.

### Example Question #2 : Parallel Lines

Which of the following lines is parallel to  ?

Explanation:

Two lines that are parallel have the same slope. The slope of is , so we want another line with a slope of . The only other line with a slope of  is

### Example Question #2 : How To Find Out If Lines Are Parallel

Which of these lines is parallel to ?

Explanation:

Lines are parallel if they have the same slope. In standard form, is the slope.

For our given equation, the slope is . Only has the same slope.

### Example Question #43 : Algebra I

Which of the following lines will be parallel to ?

Explanation:

Two lines are parallel if they have the same slope. When a line is in standard form, the is the slope.

For the given line , the slope will be . Only one other line has a slope of :

### Example Question #3 : Parallel Lines

Are the following lines parallel?

Yes

It cannot be determined from the information given

No

No

Explanation:

By definition, two lines are parallel if they have the same slope. Notice that since we are given the lines in the  format, and our slope is given by , it is clear that the slopes are not the same in this case, and thus the lines are not parallel.

### Example Question #6 : How To Find Out If Lines Are Parallel

Which of the following lines is parallel to the line ?

Explanation:

Parallel lines have the same slope. In slope-intercept form, , is the slope.

Here the slope is ; thus, any line that is parallel to the line in question will also have a slope of .

Only one answer choice satisfies this requirement:

Note: the answer choice  is incorrect. If put into  form, the equation becomes .  Therefore the slope is actually , not .

### Example Question #51 : Coordinate Geometry

Which of the following lines would be parallel to the line described by the equation?

Explanation:

The way to determine parallel lines is to look at the slope. That means when you look at the equation in slope-intercept form, , you're looking at the

In the given problem, the slope is . Parallel lines will have identical slopes; thus, any line that is parallel to the line described by the equation would ALSO have a slope of . Only one answer choice satisfies that requirement:

.

### Example Question #1 : How To Find The Slope Of Parallel Lines

Which of the following lines would be parallel to ?

Explanation:

Two lines are parallel if they have the same slope. When looking at the standard line equation , the important thing is that the 's are the same. In this case, the given equation has a slope of . Only one answer choice also has a slope of .

### Example Question #2 : How To Find The Slope Of Parallel Lines

What is the slope of the line that runs through points  and

Explanation:

Use the slope formula (difference between 's over difference between 's) to find that the slope is .

### Example Question #2 : How To Find The Slope Of Parallel Lines

A line that is parallel to  will have what slope?