Lines

Help Questions

SAT Math › Lines

Questions 1 - 10
1

Which of the following lines is perpendicular to the line ?

Explanation

Perpendicular lines will have slopes that are negative reciprocals of one another. Our first step will be to find the slope of the given line by putting the equation into slope-intercept form.

The slope of this line is . The negative reciprocal will be , which will be the slope of the perpendicular line.

Now we need to find the answer choice with this slope by converting to slope-intercept form.

This equation has a slope of , and must be our answer.

2

There is a line defined by the equation below:

There is a second line that passes through the point and is parallel to the line given above. What is the equation of this second line?

Explanation

Parallel lines have the same slope. Solve for the slope in the first line by converting the equation to slope-intercept form.

3x + 4y = 12

4y = _–_3x + 12

y = (3/4)x + 3

slope = _–_3/4

We know that the second line will also have a slope of _–_3/4, and we are given the point (1,2). We can set up an equation in slope-intercept form and use these values to solve for the y-intercept.

y = mx + b

2 = _–_3/4(1) + b

2 = _–_3/4 + b

b = 2 + 3/4 = 2.75

Plug the y-intercept back into the equation to get our final answer.

y = (3/4)x + 2.75

3

What line is perpendicular to and passes through ?

Explanation

Convert the given equation to slope-intercept form.

The slope of this line is . The slope of the line perpendicular to this one will have a slope equal to the negative reciprocal.

The perpendicular slope is .

Plug the new slope and the given point into the slope-intercept form to find the y-intercept.

So the equation of the perpendicular line is .

4

Which of the following lines is perpendicular to the line ?

Explanation

Perpendicular lines will have slopes that are negative reciprocals of one another. Our first step will be to find the slope of the given line by putting the equation into slope-intercept form.

The slope of this line is . The negative reciprocal will be , which will be the slope of the perpendicular line.

Now we need to find the answer choice with this slope by converting to slope-intercept form.

This equation has a slope of , and must be our answer.

5

One line has four collinear points in order from left to right A, B, C, D. If AB = 10’, CD was twice as long as AB, and AC = 25’, how long is AD?

45'

40'

50'

35'

30'

Explanation

AB = 10 ’

BC = AC – AB = 25’ – 10’ = 15’

CD = 2 * AB = 2 * 10’ = 20 ’

AD = AB + BC + CD = 10’ + 15’ + 20’ = 45’

6

One line has four collinear points in order from left to right A, B, C, D. If AB = 10’, CD was twice as long as AB, and AC = 25’, how long is AD?

45'

40'

50'

35'

30'

Explanation

AB = 10 ’

BC = AC – AB = 25’ – 10’ = 15’

CD = 2 * AB = 2 * 10’ = 20 ’

AD = AB + BC + CD = 10’ + 15’ + 20’ = 45’

7

A line segment has endpoints (0,4) and (5,6). What are the coordinates of the midpoint?

(0,4)

(0,6)

(2.5,-5)

(2.5,5)

(3,9)

Explanation

A line segment has endpoints (0,4) and (5,6). To find the midpoint, use the midpoint formula:

X: (x1+x2)/2 = (0+5)/2 = 2.5

Y: (y1+y2)/2 = (4+6)/2 = 5

The coordinates of the midpoint are (2.5,5).

8

Consider the lines described by the following two equations:

4y = 3x2

3y = 4x2

Find the vertical distance between the two lines at the points where x = 6.

36

21

12

44

48

Explanation

Since the vertical coordinates of each point are given by y, solve each equation for y and plug in 6 for x, as follows:

Taking the difference of the resulting y -values give the vertical distance between the points (6,27) and (6,48), which is 21.

9

Consider the lines described by the following two equations:

4y = 3x2

3y = 4x2

Find the vertical distance between the two lines at the points where x = 6.

36

21

12

44

48

Explanation

Since the vertical coordinates of each point are given by y, solve each equation for y and plug in 6 for x, as follows:

Taking the difference of the resulting y -values give the vertical distance between the points (6,27) and (6,48), which is 21.

10

A line segment has endpoints (0,4) and (5,6). What are the coordinates of the midpoint?

(0,4)

(0,6)

(2.5,-5)

(2.5,5)

(3,9)

Explanation

A line segment has endpoints (0,4) and (5,6). To find the midpoint, use the midpoint formula:

X: (x1+x2)/2 = (0+5)/2 = 2.5

Y: (y1+y2)/2 = (4+6)/2 = 5

The coordinates of the midpoint are (2.5,5).

Page 1 of 58
Return to subject