PSAT Math › Factoring Polynomials
Let and
be integers, such that
. If
and
, then what is
?
Cannot be determined
We are told that x3 - y3 = 56. We can factor the left side of the equation using the formula for difference of cubes.
x3 - y3 = (x - y)(x2 + xy + y2) = 56
Since x - y = 2, we can substitute this value in for the factor x - y.
2(x2 + xy + y2) = 56
Divide both sides by 2.
x2 + xy + y2 = 28
Because we are trying to find x2 + y2, if we can get rid of xy, then we would have our answer.
We are told that 3xy = 24. If we divide both sides by 3, we see that xy = 8.
We can then substitute this value into the equation x2 + xy + y2 = 28.
x2 + 8 + y2 = 28
Subtract both sides by eight.
x2 + y2 = 20.
The answer is 20.
ALTERNATE SOLUTION:
We are told that x - y = 2 and 3xy = 24. This is a system of equations.
If we solve the first equation in terms of x, we can then substitute this into the second equation.
x - y = 2
Add y to both sides.
x = y + 2
Now we will substitute this value for x into the second equation.
3(y+2)(y) = 24
Now we can divide both sides by three.
(y+2)(y) = 8
Then we distribute.
y2 + 2y = 8
Subtract 8 from both sides.
y2 + 2y - 8 = 0
We need to factor this by thinking of two numbers that multiply to give -8 but add to give 2. These numbers are 4 and -2.
(y + 4)(y - 2) = 0
This means either y - 4 = 0, or y + 2 = 0
y = -4, or y = 2
Because x = y + 2, if y = -4, then x must be -2. Similarly, if y = 2, then x must be 4.
Let's see which combination of x and y will satisfy the final equation that we haven't used, x3 - y3 = 56.
If x = -2 and y = -4, then
(-2)3 - (-4)3 = -8 - (-64) = 56. So that means that x= -2 and y = -4 is a valid solution.
If x = 4 and y = 2, then
(4)3 - 23 = 64 - 8 = 56. So that means x = 4 and y = 2 is also a valid solution.
The final value we are asked to find is x2 + y2.
If x= -2 and y = -4, then x2 + y2 = (-2)2 + (-4)2 = 4 + 16 = 20.
If x = 4 and y = 2, then x2 + y2 = (4)2 + 22 = 16 + 4 = 20.
Thus, no matter which solution we use for x and y, x2 + y2 = 20.
The answer is 20.
If r and t are constants and x2 +rx +6=(x+2)(x+t), what is the value of r?
5
6
7
It cannot be determined from the given information.
We first expand the right hand side as x2+2x+tx+2t and factor out the x terms to get x2+(2+t)x+2t. Next we set this equal to the original left hand side to get x2+rx +6=x2+(2+t)x+2t, and then we subtract x2 from each side to get rx +6=(2+t)x+2t. Since the coefficients of the x terms on each side must be equal, and the constant terms on each side must be equal, we find that r=2+t and 6=2t, so t is equal to 3 and r is equal to 5.
Let and
be integers, such that
. If
and
, then what is
?
Cannot be determined
We are told that x3 - y3 = 56. We can factor the left side of the equation using the formula for difference of cubes.
x3 - y3 = (x - y)(x2 + xy + y2) = 56
Since x - y = 2, we can substitute this value in for the factor x - y.
2(x2 + xy + y2) = 56
Divide both sides by 2.
x2 + xy + y2 = 28
Because we are trying to find x2 + y2, if we can get rid of xy, then we would have our answer.
We are told that 3xy = 24. If we divide both sides by 3, we see that xy = 8.
We can then substitute this value into the equation x2 + xy + y2 = 28.
x2 + 8 + y2 = 28
Subtract both sides by eight.
x2 + y2 = 20.
The answer is 20.
ALTERNATE SOLUTION:
We are told that x - y = 2 and 3xy = 24. This is a system of equations.
If we solve the first equation in terms of x, we can then substitute this into the second equation.
x - y = 2
Add y to both sides.
x = y + 2
Now we will substitute this value for x into the second equation.
3(y+2)(y) = 24
Now we can divide both sides by three.
(y+2)(y) = 8
Then we distribute.
y2 + 2y = 8
Subtract 8 from both sides.
y2 + 2y - 8 = 0
We need to factor this by thinking of two numbers that multiply to give -8 but add to give 2. These numbers are 4 and -2.
(y + 4)(y - 2) = 0
This means either y - 4 = 0, or y + 2 = 0
y = -4, or y = 2
Because x = y + 2, if y = -4, then x must be -2. Similarly, if y = 2, then x must be 4.
Let's see which combination of x and y will satisfy the final equation that we haven't used, x3 - y3 = 56.
If x = -2 and y = -4, then
(-2)3 - (-4)3 = -8 - (-64) = 56. So that means that x= -2 and y = -4 is a valid solution.
If x = 4 and y = 2, then
(4)3 - 23 = 64 - 8 = 56. So that means x = 4 and y = 2 is also a valid solution.
The final value we are asked to find is x2 + y2.
If x= -2 and y = -4, then x2 + y2 = (-2)2 + (-4)2 = 4 + 16 = 20.
If x = 4 and y = 2, then x2 + y2 = (4)2 + 22 = 16 + 4 = 20.
Thus, no matter which solution we use for x and y, x2 + y2 = 20.
The answer is 20.
If r and t are constants and x2 +rx +6=(x+2)(x+t), what is the value of r?
5
6
7
It cannot be determined from the given information.
We first expand the right hand side as x2+2x+tx+2t and factor out the x terms to get x2+(2+t)x+2t. Next we set this equal to the original left hand side to get x2+rx +6=x2+(2+t)x+2t, and then we subtract x2 from each side to get rx +6=(2+t)x+2t. Since the coefficients of the x terms on each side must be equal, and the constant terms on each side must be equal, we find that r=2+t and 6=2t, so t is equal to 3 and r is equal to 5.
Factor and simplify:
is a difference of squares.
The difference of squares formula is .
Therefore, =
.
Factor and simplify:
is a difference of squares.
The difference of squares formula is .
Therefore, =
.
Factor:
We can first factor out :
This factors further because there is a difference of squares:
If , and
, what is the value of
?
8
–8
–6
0
6
The numerator on the left can be factored so the expression becomes , which can be simplified to
Then you can solve for by adding 3 to both sides of the equation, so
When is factored, it can be written in the form
, where
,
,
,
,
, and
are all integer constants, and
.
What is the value of ?
Let's try to factor x2 – y2 – z2 + 2yz.
Notice that the last three terms are very close to y2 + z2 – 2yz, which, if we rearranged them, would become y2 – 2yz+ z2. We could factor y2 – 2yz+ z2 as (y – z)2, using the general rule that p2 – 2pq + q2 = (p – q)2 .
So we want to rearrange the last three terms. Let's group them together first.
x2 + (–y2 – z2 + 2yz)
If we were to factor out a –1 from the last three terms, we would have the following:
x2 – (y2 + z2 – 2yz)
Now we can replace y2 + z2 – 2yz with (y – z)2.
x2 – (y – z)2
This expression is actually a differences of squares. In general, we can factor p2 – q2 as (p – q)(p + q). In this case, we can substitute x for p and (y – z) for q.
x2 – (y – z)2 = (x – (y – z))(x + (y – z))
Now, let's distribute the negative one in the trinomial x – (y – z)
(x – (y – z))(x + (y – z))
(x – y + z)(x + y – z)
The problem said that factoring x2 – y2 – z2 + 2yz would result in two polynomials in the form (ax + by + cz)(dx + ey + fz), where a, b, c, d, e, and f were all integers, and a > 0.
(x – y + z)(x + y – z) fits this form. This means that a = 1, b = –1, c = 1, d = 1, e = 1, and f = –1. The sum of all of these is 2.
The answer is 2.
Factor 9_x_2 + 12_x_ + 4.
(3_x_ + 2)(3_x_ + 2)
(3_x_ + 2)(3_x_ – 2)
(3_x_ – 2)(3_x_ – 2)
(9_x_ + 4)(9_x_ – 4)
(9_x_ + 4)(9_x_ + 4)
Nothing common cancels at the beginning. To factor this, we need to find two numbers that multiply to 9 * 4 = 36 and sum to 12. 6 and 6 work.
So 9_x_2 + 12_x_ + 4 = 9_x_2 + 6_x_ + 6_x_ + 4
Let's look at the first two terms and last two terms separately to begin with. 9_x_2 + 6_x_ can be simplified to 3_x_(3_x_ + 2) and 6_x_ + 4 can be simplified into 2(3_x_ + 2). Putting these together gets us
9_x_2 + 12_x_ + 4
= 9_x_2 + 6_x_ + 6_x_ + 4
= 3_x_(3_x_ + 2) + 2(3_x_ + 2)
= (3_x_ + 2)(3_x_ + 2)
This is as far as we can factor.